Advertisement

Interoperability in Pervasive Health: A Systematic Review

  • Ana Dias
  • Ana Isabel Martins
  • Alexandra Queirós
  • Nelson Pacheco RochaEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1024)

Abstract

Smart components highly integrated and miniaturized facilitate the development of wearable devices to support home monitoring of patients with chronic diseases and that should be interoperable with existing electronic health records. Objective: This study aimed to systematize current evidence of how interoperability is considered during the development of new applications to gather patients’ information in their home environments. Methods: A systematic review was performed based on a search of the literature. Results: A total of 37 articles were retrieved from the 4141 articles that result from the initial search. Conclusion: From the 4141 initial references only 81 references explicitly mentioned interoperability issues and, within these 81 references, only eight reported end-to-end solutions that can be integrated and usable in care service provision.

Keywords

eHealth Pervasive health Interoperability Home monitoring 

References

  1. 1.
    Cook, D.J., Das, S.K.: Pervasive computing at scale: transforming the state of the art. Pervasive Mob. Comput. 8(1), 22–35 (2012)CrossRefGoogle Scholar
  2. 2.
    Weiser, M.: Hot topics: ubiquitous computing. IEEE Comput. 26(10), 71–72 (1993)CrossRefGoogle Scholar
  3. 3.
    Cook, D.J., Augusto, J.C., Jakkula, V.R.: Ambient intelligence, applications, and opportunities. Pervasive Mob. Comput. 5(4), 277–298 (2009)CrossRefGoogle Scholar
  4. 4.
    Connelly, K., et al.: The future of pervasive health. IEEE Pervasive Comput. 16(1), 16–20 (2017)CrossRefGoogle Scholar
  5. 5.
    Korhonen, I., Barddram, J.: Guest editorial introduction to the special section on pervasive healthcare. IEEE Trans. Inf. Technol. Biomed. 8(3), 229 (2004)CrossRefGoogle Scholar
  6. 6.
    Mosa, A., Yoo, I., Sheets, L.: A systematic review of healthcare applications for smartphones. BMC Med. Inform. Decis. Mak. 12(1), 67 (2012)CrossRefGoogle Scholar
  7. 7.
    Heath, I.: Never had it so good? BMJ 336(7650), 950–951 (2008)CrossRefGoogle Scholar
  8. 8.
    Kleinberger, T., Becker, M., Ras, E., Holzinger, A., Müller, P.: Ambient intelligence in assisted living: enable elderly people to handle future interfaces. In: Stephanidis, C. (ed.) UAHCI 2007. LNCS, vol. 4555, pp. 103–112. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-73281-5_11CrossRefGoogle Scholar
  9. 9.
    Kapoor, A.: New frontiers in machine learning for predictive user modeling. In: Human-Centric Interfaces for Ambient Intelligence. Academic Press, Oxford (2010)CrossRefGoogle Scholar
  10. 10.
    Mirarmandehi, N.: An asynchronous dynamic bayesian network for activity recognition in an Ambient Intelligent environment. In: Pervasive Computing and Applications (ICPCA) (2010)Google Scholar
  11. 11.
    Queirós, A., Carvalho, S., Pavão, J., Rocha, N.: AAL information based services and care integration. In: Healthinf 2013 - Proceedings of the International Conference on Health Informatics. SciTePress (2013)Google Scholar
  12. 12.
    Rashidi, P., Mihailidis, A.: A survey on ambient-assisted living tools for older adults. IEEE J. Biomed. Health Inform. 17(3), 579–590 (2013)CrossRefGoogle Scholar
  13. 13.
    Halevy, A.: Game-changing interoperability for healthcare: bringing semantically harmonized clinical information into provider workflows from disparate health information technologies. In: 8th International Conference and Expo on Emerging Technologies for a Smarter World, CEWIT 2011 (2011).  https://doi.org/10.1109/cewit.2011.6135863
  14. 14.
    Emery, D., Heyes, B.J., Cowan, A.M.: Telecare delivery of health and social care information. Health Inform. J. 8(1), 29–33 (2002)CrossRefGoogle Scholar
  15. 15.
    Eysenbach, G.: What is e-health? J. Med. Internet Res. 3(2), E20 (2001).  https://doi.org/10.2196/jmir.3.2.e20 [Medline: 11720962]CrossRefGoogle Scholar
  16. 16.
    Kvedar, J., Coye, M.J., Everett, W.: Connected health: a review of technologies and strategies to improve patient care with telemedicine and telehealth. Health Aff. (Millwood) 33(2), 194–199 (2014).  https://doi.org/10.1377/hlthaff.2013.0992 [Medline: 24493760]CrossRefGoogle Scholar
  17. 17.
    Rossi, M.A., Mazzeo, M., Mercurio, G., Verbicaro, R.: Holistic health: predicting our data future (from inter-operability among systems to co-operability among people). Int. J. Med. Inform. 82(4), e14–e28 (2013).  https://doi.org/10.1016/j.ijmedinf.2012.09.003 [Medline: 23122923]CrossRefGoogle Scholar
  18. 18.
    Krukowski, A., et al.: Personal health record. In: Voros, N.S., Antonopoulos, C.P. (eds.) Cyberphysical Systems for Epilepsy and Related Brain Disorders, pp. 205–238. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-20049-1_11CrossRefGoogle Scholar
  19. 19.
    Aragüés, A., et al.: Trends and challenges of the emerging technologies toward interoperability and standardization in e-Health communications. IEEE Commun. Mag. 49(11), 182–188 (2011).  https://doi.org/10.1109/MCOM.2011.6069727CrossRefGoogle Scholar
  20. 20.
    European Commission Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions: eHealth Action Plan 2012–2020 - Innovative healthcare for the 21st century. European Commission, Brussels (2012). https://ec.europa.eu/digital-single-market/en/news/ehealth-action-plan-2012-2020-innovative-healthcare-21st-century. Accessed 06 June 2018
  21. 21.
    Kuziemsky, C.E., Peyton, L.A.: framework for understanding process interoperability and health information technology. Health Policy Technol. 5(2), 196–203 (2016).  https://doi.org/10.1016/j.hlpt.2016.02.007CrossRefGoogle Scholar
  22. 22.
    Perlin, J.B.: Health information technology interoperability and use for better care and evidence. JAMA – J. Am. Med. Assoc. 316(16), 1667–1668 (2016).  https://doi.org/10.1001/jama.2016.12337CrossRefGoogle Scholar
  23. 23.
    Dias, A., Martins, A., Queirós, A., Pacheco, R.N.: Interoperability in pervasive health: is it tackled as a priority? In: Proceedings of the 11th International Joint Conference on Biomedical Engineering Systems and Technologies – HEALTHINF, vol. 5, pp. 57–65 (2018). ISBN 978-989-758-281-3.  https://doi.org/10.5220/0006545400570065
  24. 24.
    Queirós, A., et al.: Pervasive health and regulatory frameworks. In: Verdier, C., Bienkiewicz, M., Fred, A., Gamboa, H., Elias, D. (eds.) BIOSTEC 2015, Proceedings of the International Joint Conference on Biomedical Engineering Systems and Technologies, vol. 5, pp. 494–501 (2015).  https://doi.org/10.5220/0005249204940501
  25. 25.
    Moher, D., Liberati, A., Tetzlaff, J., Altman, D.G.: Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 6(7), e1000097 (2009).  https://doi.org/10.1371/journal.pmed.1000097CrossRefGoogle Scholar
  26. 26.
    Grossi, F., Bianchi, V., Losardo, A., Matrella, G., De Munari, I., Ciampolini, P.: A flexible framework for ambient assisted living applications. In: IASTED International Conference on Assistive Technologies Proceedings, AT 2012, pp. 817–824 (2012).  https://doi.org/10.2316/p.2012.766-007
  27. 27.
    Escobar, R., Akopian, D., Boppana, R.: A sensor data format incorporating battery charge information for smartphone-based mHealth applications. In: SPIE - The International Society for Optical Engineering Proceedings, vol. 9411 (2015).  https://doi.org/10.1117/12.2083758
  28. 28.
    Elsaadi, R., Shafik, M.: Deployment of assisted living technology using intelligent body sensors platform for elderly people health monitoring. Adv. Transdisc. Eng. 3, 219–224 (2016).  https://doi.org/10.3233/978-1-61499-668-2-219CrossRefGoogle Scholar
  29. 29.
    Palma, L., Pernini, L., Belli, A., Valenti, S., Maurizi, L., Pierleoni, P.: IPv6 WSN solution for integration and interoperation between smart home and AAL systems. In: SAS 2016 - Sensors Applications Symposium Proceedings, pp. 171–175 (2016).  https://doi.org/10.1109/sas.2016.7479840
  30. 30.
    Su, C., Wu, C.: JADE implemented mobile multi-agent based, distributed information platform for pervasive health care monitoring. Appl. Soft Comput. J. 11(1), 315–325 (2011).  https://doi.org/10.1016/j.asoc.2009.11.022CrossRefGoogle Scholar
  31. 31.
    Norgall, T., Wichert, R.: Towards interoperability and integration of personal health and AAL ecosystems. Stud. Health Technol. Inform. 177, 272–282 (2012).  https://doi.org/10.3233/978-1-61499-069-7-272CrossRefGoogle Scholar
  32. 32.
    Carr, D., O’Grady, M.J., O’Hare, G.M.P., Collier, R.: SIXTH: a middleware for supporting ubiquitous sensing in personal health monitoring (2013).  https://doi.org/10.1007/978-3-642-37893-5_47_e
  33. 33.
    Damas, M., Pomares, H., Gonzalez, S., Olivares, A., Rojas, I.: Ambient assisted living devices interoperability based on OSGi and the X73 standard. Telemed. e-Health 19(1), 54–60 (2013).  https://doi.org/10.1089/tmj.2012.0052CrossRefGoogle Scholar
  34. 34.
    Ferreira, L., Ambrósio, P.: Towards an interoperable health-assistive environment: the eHealthCom platform. In: IEEE-EMBS International Conference on Biomedical and Health Informatics Proceedings: Global Grand Challenge of Health Informatics, BHI 2012, pp. 930–932 (2012).  https://doi.org/10.1109/bhi.2012.6211740
  35. 35.
    Kilintzis, V., Moulos, I., Koutkias, V., Maglaveras, N.: Exploiting the universAAL platform for the design and development of a physical activity monitoring application. In: ACM International Conference Proceeding Series (2013).  https://doi.org/10.1145/2504335.2504351
  36. 36.
    Norgall, T., Wichert, R.: Personalized use of ICT-from telemonitoring to ambient assisted living. Stud. Health Technol. Inform. 187, 145–151 (2013).  https://doi.org/10.3233/978-1-61499-256-1-145CrossRefGoogle Scholar
  37. 37.
    Ruiz-Zafra, Á., Benghazi, K., Noguera, M., Garrido, J.L.: Zappa: an open mobile platform to build cloud-based m-Health systems. In: van Berlo, A., Hallenborg, K., Rodríguez, J., Tapia, D., Novais, P. (eds.) Ambient Intelligence - Software and Applications. AISC, vol. 219, pp. 87–94. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-319-00566-9_12CrossRefGoogle Scholar
  38. 38.
    Costa, A., Novais, P., Simoes, R.: An AAL collaborative system: the AAL4ALL and a mobile assistant case study. In: Camarinha-Matos, L.M., Afsarmanesh, H. (eds.) PRO-VE 2014. IAICT, vol. 434, pp. 699–709. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-44745-1_69CrossRefGoogle Scholar
  39. 39.
    Pereira, R., Barros, C., Pereira, S., Mendes, P.M., Silva, C.A.: A middleware for intelligent environments in ambient assisted living. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, IEEE Engineering in Medicine and Biology Society. Annual Conference, pp. 5924–5927 (2014).  https://doi.org/10.1109/embc.2014.6944977
  40. 40.
    Rossi, L., et al.: Interoperability issues among smart home technological frameworks. In: MESA 2014 – 10th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications, Conference Proceedings (2014).  https://doi.org/10.1109/mesa.2014.6935626
  41. 41.
    Denkovski, D., Atanasovski, V., Gavrilovska, L.: Device gateway design for ambient assisted living. In: Atanasovski, V., Leon-Garcia, A. (eds.) FABULOUS 2015. LNICST, vol. 159, pp. 100–107. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-27072-2_13CrossRefGoogle Scholar
  42. 42.
    Pradilla, J., Palau, C., Esteve, M.: SOSLITE: lightweight sensor observation service (SOS) for the internet of things (IOT). In: 2015 ITU Kaleidoscope: Trust in the Information Society (K-2015), Barcelona, pp. 1–7 (2015).  https://doi.org/10.1109/kaleidoscope.2015.7383625
  43. 43.
    Woznowski, P., et al.: A multi-modal sensor infrastructure for healthcare in a residential environment. In: 2015 IEEE International Conference on Communication Workshop Proceedings, ICCW 2015, pp. 271–277 (2015).  https://doi.org/10.1109/iccw.2015.7247190
  44. 44.
    Ding, F., Song, A., Tong, E., Li, J.: A smart gateway architecture for improving efficiency of home network applications. J. Sens. 216, 10 p. (2016).  https://doi.org/10.1155/2016/2197237Google Scholar
  45. 45.
    Smirek, L., Zimmermann, G., Beigl, M.: Just a smart home or your smart home - a framework for personalized user interfaces based on eclipse smart home and universal remote console. Procedia Comput. Sci. 58, 107–116 (2016).  https://doi.org/10.1016/j.procs.2016.09.018CrossRefGoogle Scholar
  46. 46.
    Xiao, B., Kanter, T., Rahmani, R.: Logical interactions for heterogeneous IoT entities via virtual world mirrors in support of ambient assisted living. J. Ambient Intell. Smart Environ. 8(5), 565–580 (2016).  https://doi.org/10.3233/AIS-160398CrossRefGoogle Scholar
  47. 47.
    Frontoni, E., Pollini, R., Russo, P., Zingaretti, P., Cerri, G.: HDOMO: smart sensor integration for an active and independent longevity of the elderly. Sensors 17(11), 2610 (2017)CrossRefGoogle Scholar
  48. 48.
    Xu, B., Xu, L., Cai, H., Jiang, L., Luo, Y., Gu, Y.: The design of an m-Health monitoring system based on a cloud computing platform. Enterp. Inf. Syst. 11(1), 17–36 (2017)CrossRefGoogle Scholar
  49. 49.
    Costa, A., Julián, V., Novais, P.: Advances and trends for the development of ambient-assisted living platforms. Expert Syst. 34(2), e12163 (2017)CrossRefGoogle Scholar
  50. 50.
    Garcés, L., Nakagawa, E.Y.: A process to establish, model and validate missions of systems-of-systems in reference architectures. In: the Symposium on Applied Computing Proceedings, pp. 1765–1772. ACM (2017)Google Scholar
  51. 51.
    Yacchirema, D.C., Palau, C.E., Esteve, M.: Enable IoT interoperability in ambient assisted living: Active and healthy aging scenarios. In: Proceedings of 2017 14th IEEE Annual Consumer Communications & Networking Conference (CCNC), pp. 53–58. IEEE (2017)Google Scholar
  52. 52.
    Zgheib, R., De Nicola, A., Villani, M.L., Conchon, E., Bastide, R.: A flexible architecture for cognitive sensing of activities in ambient assisted living. In: Proceedings of Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE), pp. 284–289. IEEE (2017)Google Scholar
  53. 53.
    Lee, D., Bae, S., Song, J.H., Yi, B., Kim, I.K.: Improving chronic disease management with mobile health platform. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society Proceedings, EMBS, pp. 2275–2278 (2013).  https://doi.org/10.1109/embc.2013.6609991
  54. 54.
    Galligioni, E., et al.: Integrating mHealth in oncology: experience in the province of trento. J. Med. Internet Res. 17(5), e114 (2015).  https://doi.org/10.2196/jmir.3743CrossRefGoogle Scholar
  55. 55.
    Gietzelt, M., et al.: Home-centered health-enabling technologies and regional health information systems an integration approach based on international standards. Methods Inf. Med. 53(3), 160–166 (2014).  https://doi.org/10.3414/ME13-02-0008CrossRefGoogle Scholar
  56. 56.
    Jung, E., Kim, J., Chung, K., Park, D.K.: Mobile healthcare application with EMR interoperability for diabetes patients. Clust. Comput. 17(3), 871–880 (2014).  https://doi.org/10.1007/s10586-013-0315-2CrossRefGoogle Scholar
  57. 57.
    Alberts, R., Fogwill, T., Botra, A., Cretty, M.: An integrative ICT platform for eHealth. In: 2014 IST-Africa Conference and Exhibition Proceedings, IST-Africa 2014 (2014).  https://doi.org/10.1109/istafrica.2014.6880650
  58. 58.
    Mihaylov, M., Mihovska, A., Kyriazakos, S., Prasad, R.: Interoperable eHealth platform for personalized smart services. In: 2015 IEEE International Conference on Communication Workshop Proceedings, ICCW 2015, pp. 240–245 (2015).  https://doi.org/10.1109/iccw.2015.7247185
  59. 59.
    Park, H.S., Cho, H., Kim, H.S.: Development of a multi-agent m-health application based on various protocols for chronic disease self-management. J. Med. Syst. 40(1), 36 (2016).  https://doi.org/10.1007/s10916-015-0401-5CrossRefGoogle Scholar
  60. 60.
    Torres Zenteno, A.H., et al.: Mobile platform for treatment of stroke: a case study of tele-assistance. Health Inform. J. 22(3), 676–690 (2016).  https://doi.org/10.1177/1460458215572925CrossRefGoogle Scholar
  61. 61.
    Aliakbarpoor, Y., Comai, S., Pozzi, G.: Designing a HL7 compatible personal health record for mobile devices. In: 2017 IEEE 3rd International Forum Research and Technologies for Society and Industry (RTSI) Proceedings, pp. 1–6. IEEE (2017)Google Scholar
  62. 62.
    Roehrs, A., da Costa, C.A., da Rosa Righi, R.: OmniPHR: a distributed architecture model to integrate personal health records. J. Biomed. Inform. 71, 70–81 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Economics, Management, Industrial Engineering and TourismGOVCOPP, University of AveiroAveiroPortugal
  2. 2.Department of Electronics, Telecommunications and InformaticsUniversity of AveiroAveiroPortugal
  3. 3.Health Sciences School, IEETAUniversity of AveiroAveiroPortugal
  4. 4.Department of Medical Sciences, IEETAUniversity of AveiroAveiroPortugal

Personalised recommendations