Advertisement

Fiber Bragg Based Sensors for Foot Plantar Pressure Analysis

  • Arnaldo G. Leal-Junior
  • M. Fátima Domingues
  • Rui Min
  • Débora Vilarinho
  • Antreas Theodosiou
  • Cátia Tavares
  • Nélia Alberto
  • Cátia Leitão
  • Kyriacos Kalli
  • Anselmo Frizera-Neto
  • Paulo André
  • Paulo Antunes
  • Carlos MarquesEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1024)

Abstract

Gait analysis is of major importance in physical rehabilitation scenarios, lower limbs diseases diagnosis and prevention. Foot plantar pressure is a key parameter in the gait analysis and its dynamic monitoring is crucial for an accurate assessment of gait related pathologies and/or rehabilitation status evolution. It is therefore critical to invest effort in research for foot plantar analysis technologies. From that perspective, optical fiber sensors appear to be an excellent solution, given their sensing advantages for medical applications, when compared with their electronic counterparts. This chapter explores the use of optical fiber Bragg grating (FBG) sensors, both in plastic and silica optical fiber, to dynamically monitor the foot plantar pressure. An array of FBGs was integrated in a specially designed cork insole, with the optical sensors placed at key pressure points for analysis. Both insoles, containing plastic and silica optical fiber sensors, were tested for dynamic gait monitoring and body center of mass displacement, showing the reliability of this sensing technology for foot plantar pressure monitoring during gait motion.

Keywords

Fiber Bragg Gratings Foot plantar pressure Polymer optical Fiber Silica optical fiber Gait analysis 

Notes

Acknowledgments

CAPES (88887.095626/2015-01); FAPES (72982608); CNPq (304192/2016-3 and 310310/2015-6); FCT (SFRH/BPD/101372/2014 and SFRH/ BPD/109458/2015); Fundação para Ciência e a Tecnologia/Ministério da Educação e Ciência (UID/EEA/50008/2013); European Regional Development Fund (PT2020 Partnership Agreement); FCT, IT-LA (PREDICT scientific action); Fundamental Research Funds for the Heilongjiang Provincial Universities (KJCXZD201703).

References

  1. 1.
    Domingues, M.F., et al.: Insole optical fiber Bragg grating sensors network for dynamic vertical force monitoring. J. Biomed. Opt. 22(9), 91507 (2017)CrossRefGoogle Scholar
  2. 2.
    Korhonen, I., Pärkkä, J., Van Gils, M.: Health monitoring in the home of the future. IEEE Eng. Med. Biol. Mag. 22(3), 66–73 (2003)CrossRefGoogle Scholar
  3. 3.
    Morag, E., Cavanagh, P.R.: Structural and functional predictors of regional peak pressures under the foot during walking. J. Biomech. 32, 359–370 (1999)CrossRefGoogle Scholar
  4. 4.
    Leal-Junior, A.G., Frizera, A., Avellar, L.M., Marques, C., Pontes, M.J.: Polymer optical fiber for in-shoe monitoring of ground reaction forces during the gait. IEEE Sens. J. 18(6), 2362–2368 (2018)CrossRefGoogle Scholar
  5. 5.
    Villa-Parra, A., Delisle-Rodriguez, D., Souza Lima, J., Frizera-Neto, A., Bastos, T.: Knee impedance modulation to control an active orthosis using insole sensors. Sensors 17(12), 2751 (2017)CrossRefGoogle Scholar
  6. 6.
    Hadi, A., Razak, A., Zayegh, A., Begg, R.K., Wahab, Y.: Foot plantar pressure measurement system: a review. Sensors 12, 9884–9912 (2012)CrossRefGoogle Scholar
  7. 7.
    Sanderson, D.J., Franks, I.M., Elliott, D.: The effects of targeting on the ground reaction forces during level walking. Hum. Mov. Sci. 12(3), 327–337 (1993)CrossRefGoogle Scholar
  8. 8.
    Ballaz, L., Raison, M., Detrembleur, C.: Decomposition of the vertical ground reaction forces during gait on a single force plate. J. Musculoskelet. Neuronal Interact. 13(2), 236–243 (2013)Google Scholar
  9. 9.
    Webb, D.J.: Fibre Bragg grating sensors in polymer optical fibres. Meas. Sci. Technol. 26(9), 92004 (2015)CrossRefGoogle Scholar
  10. 10.
    Zhu, T., Ke, T., Rao, Y., Chiang, K.S.: Fabry-Perot optical fiber tip sensor for high temperature measurement. Opt. Commun. 283(19), 3683–3685 (2010)CrossRefGoogle Scholar
  11. 11.
    Minakawa, K., Mizuno, Y., Nakamura, K.: Cross effect of strain and temperature on Brillouin frequency shift in polymer optical fibers. J. Light. Technol. 35(12), 2481–2486 (2017)CrossRefGoogle Scholar
  12. 12.
    Rajan, G., Noor, Y.M., Liu, B., Ambikairaja, E., Webb, D.J., Peng, G.D.: A fast response intrinsic humidity sensor based on an etched singlemode polymer fiber Bragg grating. Sens. Actuators A Phys. 203, 107–111 (2013)CrossRefGoogle Scholar
  13. 13.
    Zhong, N., Liao, Q., Zhu, X., Zhao, M., Huang, Y., Chen, R.: Temperature-independent polymer optical fiber evanescent wave sensor. Sci. Rep. 5, 1–10 (2015)Google Scholar
  14. 14.
    Leal-Junior, A., Frizera, A., Marques, C., José Pontes, M.: Polymer-optical-fiber-based sensor system for simultaneous measurement of angle and temperature. Appl. Opt. 57(7), 1717 (2018)CrossRefGoogle Scholar
  15. 15.
    Diaz, C.A.R., et al.: Liquid level measurement based on FBG-embedded diaphragms with temperature compensation. IEEE Sens. J. 18(1), 193–200 (2018)CrossRefGoogle Scholar
  16. 16.
    Ishikawa, R., et al.: Pressure dependence of fiber Bragg grating inscribed in perfluorinated polymer fiber. IEEE Photonics Technol. Lett. 29(24), 2167–2170 (2017)CrossRefGoogle Scholar
  17. 17.
    Peters, K.: Polymer optical fiber sensors—a review. Smart Mater. Struct. 20(1), 13002 (2010)CrossRefGoogle Scholar
  18. 18.
    Leal-Junior, A.G., Marques, C., Frizera, A., Pontes, M.J.: Dynamic mechanical analysis on a polymethyl methacrylate (PMMA) polymer optical fiber. IEEE Sens. J. 18(6), 2353–2361 (2018)CrossRefGoogle Scholar
  19. 19.
    Leal-Junior, A., Frizera-Neto, A., Marques, C., Pontes, M.: Measurement of temperature and relative humidity with polymer optical fiber sensors based on the induced stress-optic effect. Sensors 18(3), 916 (2018)CrossRefGoogle Scholar
  20. 20.
    Liu, Y., Peng, W., Liang, Y., Zhang, X., Zhou, X., Pan, L.: Fiber-optic Mach-Zehnder interferometric sensor for high-sensitivity high temperature measurement. Opt. Commun. 300, 194–198 (2013)CrossRefGoogle Scholar
  21. 21.
    Mizuno, Y., Hayashi, N., Fukuda, H., Song, K.Y., Nakamura, K.: Ultrahigh-speed distributed Brillouin reflectometry. Light Sci. Appl. 5(12), e16184 (2016)CrossRefGoogle Scholar
  22. 22.
    Perrotton, C., Javahiraly, N., Slaman, M., Dam, B., Meyrueis, P.: Fiber optic surface plasmon resonance sensor based on wavelength modulation for hydrogen sensing. Opt. Express 19(S6), A1175 (2011)CrossRefGoogle Scholar
  23. 23.
    Luo, Y., Yan, B., Zhang, Q., Peng, G.-D., Wen, J., Zhang, J.: Fabrication of polymer optical fibre (POF) gratings. Sensors 17(3), 511 (2017)CrossRefGoogle Scholar
  24. 24.
    Theodosiou, A., Lacraz, A., Stassis, A., Koutsides, C., Komodromos, M., Kalli, K.: Plane-by-plane femtosecond laser inscription method for single-peak bragg gratings in multimode CYTOP polymer optical fiber. J. Light. Technol. 35(24), 5404–5410 (2017)CrossRefGoogle Scholar
  25. 25.
    Cusano, A., Cutolo, A., Albert, J.: Fiber Bragg Grating Sensors: Market Overview and New Perspectives. Bentham Science Publishers, Potomac (2009)Google Scholar
  26. 26.
    Ashby, M.F.: Materials Selection in Mechanical Design. Elsevier, Cambridge (2005)Google Scholar
  27. 27.
    Abboud, R.J.: (i) relevant foot biomechanics. Orthopaedics 16, 165–179 (2002)Google Scholar
  28. 28.
    Kirtley, C.: Clinical Gait Analysis: Theory and Practice. Elsevier, Philadelphia (2006)Google Scholar
  29. 29.
    Liu, Y., Lu, K., Yan, S., Sun, M., Lester, D.K., Zhang, K.: Gait phase varies over velocities. Gait Posture 39(2), 756–760 (2014)CrossRefGoogle Scholar
  30. 30.
    Shu, L., Hua, T., Wang, Y., Li, Q., Feng, D.D., Tao, X.: In-shoe plantar pressure measurement and analysis system based on fabric pressure sensing array. IEEE Trans. Inf. Technol. Biomed. 14(3), 767–775 (2010)CrossRefGoogle Scholar
  31. 31.
    Vilarinho, D., et al.: POFBG-embedded cork insole for plantar pressure monitoring. Sensors 17(12), 2924 (2017)CrossRefGoogle Scholar
  32. 32.
    Vilarinho, D., et al.: Foot plantar pressure monitoring with CYTOP Bragg Gratings sensing system. In: Proceedings of the 11th International Joint Conference on Biomedical Engineering Systems and Technologies, vol. 1, no. Biostec, pp. 25–29 (2018)Google Scholar
  33. 33.
    Thorlabs, Graded-Index Polymer Optical Fiber (GI-POF). https://www.thorlabs.com/catalogPages/1100.pdf. Accessed 17 May 2018
  34. 34.
    Antunes, P., Domingues, F., Granada, M., André, P.: Mechanical properties of optical fibers, pp. 1–15. INTECH Open Access Publisher (2012)Google Scholar
  35. 35.
    Suresh, R., Bhalla, S., Hao, J., Singh, C.: Development of a high resolution plantar pressure monitoring pad based on fiber Bragg grating (FBG) sensors. Technol. Health Care 23, 785–794 (2015)CrossRefGoogle Scholar
  36. 36.
    Domingues, M.F., et al.: Insole optical fiber sensor architecture for remote gait analysis - an eHealth solution. IEEE Internet Things J. 6, 207–214 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Arnaldo G. Leal-Junior
    • 1
  • M. Fátima Domingues
    • 2
  • Rui Min
    • 3
  • Débora Vilarinho
    • 4
  • Antreas Theodosiou
    • 5
  • Cátia Tavares
    • 4
  • Nélia Alberto
    • 2
  • Cátia Leitão
    • 4
  • Kyriacos Kalli
    • 5
  • Anselmo Frizera-Neto
    • 1
  • Paulo André
    • 6
  • Paulo Antunes
    • 2
    • 4
  • Carlos Marques
    • 2
    • 4
    Email author
  1. 1.Telecommunications Laboratory, Electrical Engineering DepartmentFederal University of Espírito SantoVitoriaBrazil
  2. 2.Instituto de TelecomunicaçõesAveiroPortugal
  3. 3.ITEAM Research Institute, Universitat Politècnica de ValènciaValenciaSpain
  4. 4.Department of Physics and I3NUniversity of AveiroAveiroPortugal
  5. 5.Photonics and Optical Sensors Research Laboratory (PhOSLab)Cyprus University of TechnologyLimassolCyprus
  6. 6.Instituto de Telecomunicações and Department of Electrical and Computer Engineering, Instituto Superior TécnicoUniversity of LisbonLisbonPortugal

Personalised recommendations