The Biotechnology of Ginger

  • Kodoth Prabhakaran Nair


The chapter discusses tissue culture (micropropagation), direct regeneration from the aerial stem, anther culture, inflorescence culture and in vivo development of fruit, microrhizomes, plant regeneration from callus culture, suspension culture, protoplast culture, in vitro selection/induction of systemic resistance, soma clonal variation, production of secondary metabolites, in vitro polyploidy, and field evaluation of tissue-cultured plants. The chapter will additionally talk about germplasm conservation, in which in vitro conservation and cryopreservation are discussed. Also, the place of synthetic seeds in ginger production is discussed in the chapter. Further, molecular markers and diversity studies including molecular phylogeny of ginger are also discussed. Additionally, the application of molecular markers for detection of adulteration in traded ginger, in genetic fidelity testing, is discussed. Tagging genes of interest using molecular markers, isolating candidate genes for other agronomically important traits, and genetic transformation are also discussed.


Biotechnology Tissue culture Germplasm conservation Molecular markers Molecular phylogeny Gene tagging 


  1. Adaniya, S. (2001). Optimal pollination environment of tetraploid ginger (Zingiber officinale Roscoe) evaluated by in vitro pollen germination and pollen tube growth in styles. Scientia Horticulturae, 90, 219–226.Google Scholar
  2. Adaniya, S., & Shirai, D. (2001). In vitro induction of tetraploid ginger (Zingiber officinale Roscoe) and its pollen fertility and germinability. Journal of Horticulture, 88, 277–287.Google Scholar
  3. Ahmad, D., Kikuchi, A., Jatoi, S. A., Mimura, M., & Watanabe, K. N. (2009). Genetic variation of chloroplast DNA in Zingiberaceae taxa from Myanmar assessed by PCR-restriction fragment length polymorphism analysis. The Annals of Applied Biology, 155, 91–101.CrossRefGoogle Scholar
  4. Ahn, J. H., Lee, J. J., Kim, T. S., Kim, H. S., & Lee, S. Y. (2007). Effects of growth regulators and sucrose concentrations on proliferation of in vitro shoot using bioreactor culture in Zingiber officinale. Horticulture, Environment and Biotechnology, 48, 354–358.Google Scholar
  5. Ajithkumar, P., & Seeni, S. (1995). Isolation of somaclonal variants though rhizome explants cultures of Kaempferia galanga L. In Proceedings of all India symposium on recent advances in biotechnological applications of plant tissue cell culture (RABAPTCCAS) (p. 43). Mysore: CFTRI.Google Scholar
  6. Arimura, C. T., Finger, F. L., & Casali, V. W. D. (2000a). A fast method for in vitro propagation of ginger. Tropical Science, 40, 86–91.Google Scholar
  7. Arimura, C. T., Finger, F. L., & Casali, V. W. D. (2000b). Effect of NAA and BAP on ginger (Zingiber officinale Roscoe) sprouting in solid and liquid medium. Revista Brasileira de Plantas Medicinais, 2, 23–26.Google Scholar
  8. Assiss, A. M., de Faria, R. T., Unemoto, L. K., de Colombo, L. A., & Lone, A. B. (2009). Ginger flower (Etlingera elatior) acclimation in coconut-based substrates. Acta Science, 31, 43–47.Google Scholar
  9. Aswati Nair, R., & Thomas, G. (2006). Isolation, characterization and expression studies of resistance gene candidates (RGCs) from Zingiber spp. Theoretical and Applied Genetics, 116, 123–134.CrossRefGoogle Scholar
  10. Aswati Nair, R., Kiran, A. G., Sivakumar, K. C., & Thomas, G. (2010). Molecular characterization of an oomycete-responsive PR-5 protein gene from Zingiber zerumbet. Plant Molecular Biology Reporter, 28, 128–135.CrossRefGoogle Scholar
  11. Babu, K.N. (1997). In vitro studies in Zingiber officinale Rosc. Ph.D. Thesis, Calicut University, Calicut, Kerala State.Google Scholar
  12. Babu, K. N., Samsudeen, K., & Ratnambal, M. (1992). In vitro plant regeneration from leaf derived callus in ginger, Zingiber officinale Rosc. Plant Cell Tissue Organ Culture, 29, 71–74.CrossRefGoogle Scholar
  13. Babu, K. N., Sasikumar, B., Ratnambal, M. J., George, K. J., & Ravindran, P. N. (1993). Genetic variability in turmeric (Curcuma longa L.). Indian Journal of Genet Plant Breed, 53, 91–93.Google Scholar
  14. Babu, K. N., Ravindran, P. N., & Peter, K. V. (1997). Protocols for micropropagation in spices and aromatic crops (p. 35). Calicut: Indian Institute of Spices Research.Google Scholar
  15. Babu, K. N., Minoo, D., Geetha, S. P., Samsudeen, K., Rema, J., Ravindran, P. N., et al. (1998). Plant biotechnology–its role in improvement of spices. Indian Journal of Agricultural Sciences, 68, 533–547.Google Scholar
  16. Babu, K. N., Geetha, S. P., Minoo, D., Ravindran, P. N., & Peter, K. V. (1999). In vitro conservation of cardamom (Elettaria cardamomum) germplasm. Plant Genetic Resources Newsletter, 119, 41–45.Google Scholar
  17. Babu, K. N., Ravindran, P. N., & Sasikumar, B. (2003). Field evaluation of tissue cultured plants of spices and assessment of their genetic stability using molecular markers. Final Report Submitted to Department of Biotechnology, Government of India, p. 94.Google Scholar
  18. Balachandran, S. M., Bhat, S. R., & Cahndel, K. P. S. (1990). In vitro multiplication of turmeric (Curcuma sp.) and ginger (Zingiber officinale Rosc.). Plant Cell Reports, 8, 521–524.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Behera, K. K., & Sahoo, S. (2009). An efficient method of micropropagation of ginger (Zingiber officinale Rosc. cv. Suprava and Suruchi) in vitro response of different explants’ types on shoot and root development of ginger. Indian Journal of Plant Physiology, 14, 162–168.Google Scholar
  20. Bhagyalakshmi, N. S., & Singh, N. S. (1994). The yield and quality of ginger produced by micro- propagated plants as compared with conventionally propagated plants. Journal of Horticulture Science, 69, 321–327.Google Scholar
  21. Bua-in, S., & Paisooksantivatana, Y. (2010). Study of clonally propagated cassumunar ginger (Zingiber montanum (Koenig) Link ex Dietr.) and its relation to wild Zingiber species from Thailand revealed by RAPD markers. Genetic Research and Crop Evolution, 57, 405–414.CrossRefGoogle Scholar
  22. Chan, L. K., & Thong, W. H. (2004). In vitro propagation of Zingiberaceae species with medicinal properties. Journal of Plant Biotechnology, 6, 181–188.Google Scholar
  23. Charlwood, K. A., Brown, S., & Charlwood, B. V. (1988). The accumulation of flavor compounds by cultivars of Zingiber officinale. In R. J. Robins & M. J. C. Rhoades (Eds.), Manipulating secondary metabolites in culture (pp. 195–200). Norwich: AFRC Institute of Food Research.Google Scholar
  24. Chase, M. W. (2004). Monocot relationships: An overview. American Journal of Botany, 91, 1645–1655.PubMedCrossRefPubMedCentralGoogle Scholar
  25. Cha-um, S., Tuan, N. M., & Phimmakong Kirdmanee, C. (2005). The ex vitro survival and growth of ginger (Zingiber officinale Rosc.) influence by in vitro acclimatization under high relative humidity and CO2 enrichment conditions. Asian Journal of Plant Science, 4, 109–116.CrossRefGoogle Scholar
  26. Chen, Z. H., Kai, G. Y., Liu, X. J., Lin, J., Sun, X. F., & Tang, K. X. (2005). cDNA cloning and characterization of a mannose-binding lectin from Zingiber officinale Roscoe (ginger) rhizomes. Journal of Biosciences, 30, 213–220.PubMedCrossRefPubMedCentralGoogle Scholar
  27. Chirangini, P., & Sharma, G. H. (2005). In vitro propagation and microrhizome induction in Zingiber cassumunar (Roxb.)—An antioxidant-rich medicinal plant. Journal of Food Agriculture Environment, 3, 139–142.Google Scholar
  28. Cho, S. K., Roh, K. H., Hyun, D. Y., Choi, I. L., Kim, K. Y., Kim, S. D., et al. (1997). Mass production of rhizome induced by tissue culture on ginger 2. Selection of the optimal nutrient solution and media in hydroponics. RDA Journal of Indian Crop Science, 39, 16–21.Google Scholar
  29. Christensen, A. H., & Quail, P. H. (1996). Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants. Transgenic Research, 5, 213–218.PubMedCrossRefPubMedCentralGoogle Scholar
  30. Dake, G. N., Babu, K. N., Rao, T. G. N., Leela, N. K. (1997, November 10–15). In vitro selection for resistance to soft rot and bacterial wilt in ginger. International conference on integrated plant disease Management for Sustainable Agriculture. Indian Phytopathological Society, New Delhi, pp. 339.Google Scholar
  31. Debergh, P. C., & Read, P. E. (1991). Micropropagation. In P. C. Debergh & R. H. Zimmerman (Eds.), Micropropagation: Technology and application. Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
  32. Dekkers, A. J., Rao, A., & Goh, C. J. (1991). In vitro storage of multiple shoot cultures on gingers at ambient temperature of 24–29°C. Scientia Horticulturae, 47, 157–167.CrossRefGoogle Scholar
  33. Devi, S., Taylor, M. B., Powaseu, I., & Thorpe, P. (1999). Micropropagation of ginger PRAP report-pacific regional. Agriculture Programs, 7, 11–12.Google Scholar
  34. Dogra, S. P., Korla, B. N., & Sharma, P. P. (1994). In vitro clonal propagation of ginger (Zingiber officinale Rosc.). Horticultural Journal, 7, 45–50.Google Scholar
  35. Fugisawa, M., Harada, H., Kenmoku, H., Mizutani, S., & Misawa, N. (2010). Cloning and characterization of a novel gene that encodes (S)-beta-bisabolene synthase from ginger, Zingiber officinale. Planta, 232, 121–130.CrossRefGoogle Scholar
  36. Gao, D. M., Liu, Z. W., & Fan, S. J. (2006). RAPD analysis of genetic diversity among Zingiber officinale cultivars. Journal of Agricultural Biotechnology, 14, 245–249.Google Scholar
  37. Gao, L., Liu, N., Huang, B., & Hu, X. (2008). Phylogenetic analysis and genetic mapping of Chinese Hedychium using SRAP markers. Science Horticulture, 117, 369–377.CrossRefGoogle Scholar
  38. Geetha, S.P. (2002). In Vitro technology for genetic conservation of some genera of Zingiberaceae. Ph.D. Thesis, Calicut University, Calicut, Kerala State.Google Scholar
  39. Giradi, C. G., & Pescador, R. (2010). Aclimatacao de gengibre (Zingiber officinale Roscoe) e a relacao com carboidratos endogenos. The Revista Brasileira de Plantas Medicinais, 12, 62–72.CrossRefGoogle Scholar
  40. Gosh, R., & Purkayastha, R. P. (2003). Molecular diagnosis and induced systemic protection against rhizome rot disease of ginger caused by Pythium aphanidermatum. Journal of Phytopathology, 85, 1782–1787.Google Scholar
  41. Guan, Q. Z., Guo, Y. H., Sui, X. L., Li, W., & Zhang, Z. X. (2008). Changes in photosynthetic capacity and antioxidant enzymatic systems in micropropagated Zingiber officinale plant- lets during their acclimation. Photosynthetica, 46, 193–201.CrossRefGoogle Scholar
  42. Guo, Y., & Zhang, Z. (2005). Establishment and plant regeneration of somatic embryogenic cell suspension cultures of the Zingiber officinale. Rosc Journal of Science Horticulture, 107, 90–96.CrossRefGoogle Scholar
  43. Guo, Y., Bai, J., & Zhang, Z. (2007). Plant regeneration from embrogenic suspension-derived protoplasts of ginger (Zingiber officinale Rosc.). Plant Cell, Tissue and Organ Culture, 89, 151–157.CrossRefGoogle Scholar
  44. Gurel, S., Ekrem, G., & Zeki, K. (2002). Establishment of cell suspension cultures and plant regeneration in sugar beet (Beta vulgaris L.). Turkish Journal of Botany, 26, 197–205.Google Scholar
  45. Haberlandt, G. (1902). Experiments on the culture of isolated plant cells. The Botanical Review, 35, 68–85.CrossRefGoogle Scholar
  46. He, C. K., Li, J. S., Guo, S. Z., Zheng, M., & Chen, W. S. (1995). The relationship between geographic distribution and the genetic difference of peroxidase isozyme of ginger germ- plasm. Fujian Acta Horticulture, 402, 125–132.Google Scholar
  47. Hernandez-Soto, A., Gatica-Arias, A., & Alvarenga-Venutolo, S. (2008). Low cost glass fermentor design for mass micropropagation of ginger. Agronomía Mesoamericana, 19, 87–92.CrossRefGoogle Scholar
  48. Him de Freitez, Y. Y., & Paez de Casares, J. (2004). Anatomia foliar comparada de plantas de Jengibre (Zingiber officinale Roscoe) cultivadas en tres ambientes de crecimiento. Bioagro, 16, 27–30.Google Scholar
  49. Huang, J. L., Cheng, L. L., & Zhang, Z. X. (2007). Molecular cloning and characterization of violaxanthin depoxidase (VDE) in Zingiber officinale. Plant Science, 172, 228–235.CrossRefGoogle Scholar
  50. Hyun, D. Y., Cho, S. K., Roh, K. H., Kim, K. Y., Choi, I. L., Kim, S. D., Park, M. S., & Choi, K. G. (1997). Mass production of rhizome induced by tissue culture on ginger 1. Environmental factor related to the increasing rhizome RDA. Journal of Indian Crop Science, 39, 10–15.Google Scholar
  51. Ilahi, I., & Jabeen, M. (1987). Micropropagation of Z. officinale Rosc. Pakistan Journal of Botany, 19, 61–65.Google Scholar
  52. Ilahi, I., & Jabeen, M. (1992). Tissue culture studies for micropropagation and extraction of essential oils from Zingiber officinale. Rosc. Pakistan Journal of Botany, 24(1), 54–59.Google Scholar
  53. Ipsita, R., Nuruzzaman, M., Habiba, S. U., & Uddin, A. F. M. J. (2010). Evaluation of micropropagated ginger plantlets in different soil composition of pot culture. International Journal of Sustainable Agricultural Technology, 18–21.Google Scholar
  54. Ishida, M., & Adachi, T. (1997). Plant regeneration from two callus types of ginger (Zingiber officinale Rosc.). SABRAO Journal, 29, 53–60.Google Scholar
  55. Jaleel, K., & Sasikumar, B. (2010). Genetic diversity analysis of ginger (Zingiber officinale Rosc.) germplasm based on RAPD and ISSR markers. Scientia Horticulturae, 125, 73–76.CrossRefGoogle Scholar
  56. Jamil, M., Kim, J. K., Akram, Z., Ajmal, S. U., & Rha, S. S. (2007). Regeneration of ginger plant from callus culture through organogenesis and effect of CO2 enrichment on the differentiation of regenerated plant. Biotechnology, 6, 101–104.CrossRefGoogle Scholar
  57. Jasarai, Y. T., Patel, K. G., & George, M. M. (2000, September 20–23). Micropropagation of Zingiber officinale Rosc. and Curcuma amada Roxb. In: Ramana, K. V. (Ed.), Spices and aromatic plants: Challenges and opportunities in the New Century India Indian Society for Spices, (pp. 52–54). Centennial Conference on Spices and Aromatic Plants, Calicut.Google Scholar
  58. Jatoi, S. A., Akira, K., San, S. Y., Khaw, W. N., Shinsuke, Y., Watanabe, J. A., et al. (2006). Use of RICE SSR markers as RAPD markers for genetic diversity analysis in Zingiberaceae. Breeding Science, 56, 107–111.CrossRefGoogle Scholar
  59. Jiang, H., Xie, Z., Koo, H. J., McLaughlin, S. P., Timmermann, B. N., & Gang, D. R. (2006). Metabolic profiling and phylogenetic analysis of medicinal Zingiber species: Tools for authentication of ginger (Zingiber officinale Rosc.). Phytochemistry, 67, 1673–1685.PubMedCrossRefPubMedCentralGoogle Scholar
  60. Kackar, A., Bhat, S. R., Chandel, K. P. S., & Malik, S. K. (1993). Plant regeneration via somatic embryogenesis in ginger. Plant Cell Tissue Organ Culture, 32, 289–292.CrossRefGoogle Scholar
  61. Kambaska, K. B., & Santilata, S. (2009). Effect of plant growth regulator on micropropagation of ginger (Zingiber officinale Rosc.) cv. Suprava and Suruchi. Journal of Agriculture Technology, 5, 271–280.Google Scholar
  62. Kavitha, P. G., & Thomas, G. (2006). Zingiber zerumbet, A potential Donor for Soft Rot Resistance in Ginger: Genetic Structure and Functional Genomics. Extended Abstract XVIII, Kerala Science Congress, pp. 169–171.Google Scholar
  63. Kavitha, P. G., & Thomas, G. (2008). Defence transcriptome profiling of Zingiber zerumbet (L) Smith by mRNA differential display. Journal of Biosciences, 33, 81–90.PubMedCrossRefPubMedCentralGoogle Scholar
  64. Kavitha, P. G., Pratibha, N., Aswati Nair, R., Jayachandran, B. K., Sabu, M., & Thomas, G. (2007). AFLP polymorphism and Pythium response in Zingiber species. In K. Raghunath (Ed.), Recent Trends in horticultural biotechnology (pp. 497–503). New Delhi: New India Publishing Agency.Google Scholar
  65. Kavitha, P. G., Kiran, A. G., Dinesh Raj, R., Sahu, M., & Thomas, G. (2010). Amplified fragment length polymorphism analyses unravel a striking difference in the intraspecific genetic diversity of four species of genus Zingiber Boehm. From the Western Ghats. South India Current Science, 98, 242–247.Google Scholar
  66. Kavyashree, R. (2009). An efficient in vitro protocol for clonal multiplication of ginger var Varada. Indian Journal of Biotechnology, 8, 328–331.Google Scholar
  67. Kim, T., Choi, I., Kim, H., Kim, S., Park, M., & Ko, J. (2000). Investigation of floral structure and plant regeneration through anther culture in ginger. Korean Journal of Crop Science, 45, 207–210.Google Scholar
  68. Kirdmanee, C., Mosaleeyanon, K., Tanticharoen, M., Craker, L. E., Simon, J. E., Jatisatienr, A., et al. (2004). A novel approach of bacteria-free rhizome production of ginger through bio- technology. Acta Horticulturae, 629, 457–461.CrossRefGoogle Scholar
  69. Kress, W. J., Prince, L. M., & Williams, K. J. (2002). The phylogeny and a new classification of the gingers (Zingiberaceae): Evidence from molecular data. American Journal of Botany, 89, 1682–1696.CrossRefGoogle Scholar
  70. Kulkarni, D. D., Khupse, S. S., Mascarenhas, A. F. (1987). Isolation of Pythium tolerant ginger by tis- sue culture. In: Potty, S. N. (Ed.), Proceedings of VI symposium on plantation crops, Calicut, Kerala State, India, pp. 3–13.Google Scholar
  71. Laurent, D., Frederic, P., Laurence, L., Sylvie, C., Canan, C., Kevin, W., et al. (1998). Genetic characterization of RRS1, a recessive locus in Arabidopsis thaliana that confers resist- ance to the bacterial soil borne pathogen Ralstonia solanacearum. MPMI, 11, 659–667.CrossRefGoogle Scholar
  72. Lee, S. Y., Fai, K. W., Zakaria, M., Ibrahim, H., Othman, Y. R., Gwag, G. J., et al. (2007). Characterization of polymorphic microsatellite markers, isolated from ginger (Zingiber officinale Rosc.). Molecular Ecology Notes, 7, 1009–1011.CrossRefGoogle Scholar
  73. Lincy, A. K. (2007). Investigation on direct in vitro shoot regeneration from aerial stem explants of ginger (Zingiber officinale Rosc.) and its field evaluation. Ph.D. Thesis, Calicut University, Calicut, Kerala State.Google Scholar
  74. Lincy, A. K., Jayarajan, K., & Sasikumar, B. (2008). Relationship between vegetative and rhizome characters and final rhizome yield in micropropagated ginger plants (Zingiber officinale Rosc.) over two generations. Scientia Horticulturae, 118, 70–73.CrossRefGoogle Scholar
  75. Lincy, A. K., Remashree, A. B., & Sasikumar, B. (2009). Indirect and direct somatic embryogenesis from aerial stem explants of ginger (Zingiber officinale Rosc.). Acta Botanica Croatica, 68, 93–103.Google Scholar
  76. Minas, G. J. (2010). Ginger (Zingiber officinale Rosc.) sanitation and micropropagation in vitro. Acta Horticulturae, 853, 93–98.Google Scholar
  77. Muda, A. M., Ibrahim, H., & Norzulaani, N. (2004). Differentiation of three varieties of Zingiber officinale Rosc. by RAPD finger printing. Malaysian Journal of Science, 23, 135–139.Google Scholar
  78. Murasighe, T., & Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum, 15, 473–497.CrossRefGoogle Scholar
  79. Nadgauda, R. S., Kulkarni, D. B., & Mascarenhas, A. F. (1980). Development of plantlets from tissue cultures of ginger. In: Proceedings of the Annual Symposium on Plantation Crops, Calicut, Kerala State, India, pp. 143–147.Google Scholar
  80. Nayak, S., Naik, P. K., Laxmikanta, A., Mukherjee, A. K., Panda, P. C., & Premananda, D. (2005). Assessment of genetic diversity among 16 promising cultivars of ginger using cytological and molecular markers. Zeitschrift für Naturforschung. Section C, 60, 485–492.CrossRefGoogle Scholar
  81. Nazeem, P. A., Joseph, L., Rani, T. G., Valsala, P. A., Philip, S., & Nair, G. S. (1996). Tissue culture system for in vitro pollination and regeneration of plantlets from in vitro raised seeds of ginger—Zingiber officinale Rosc. International Symposium on Medicinal and Aromatic Plants, ISHS, Acta Horticulture, 426, 10–15.Google Scholar
  82. Ngamriabsakul, C., Newman, M. F., & Cronk, Q. C. B. (2003). The phylogeny of tribe Zingiberaceae (Zingiberaceae) based on its (nrDNA) and trnl-f (cDNA) sequences. Edinburgh Journal of Botany, 60, 483–507.CrossRefGoogle Scholar
  83. Palai, S. K., Rout, G. R., Samantaray, S., & Das, P. (2000). Biochemical changes during in vitro organogenesis in Zingiber officinale Rosc. Journal of Plant Biology, 27, 153–160.Google Scholar
  84. Prathanturarug, S., Angsumalee, D., Pongsiri, N., Suwacharangoon, S., & Jenjittikul, T. (2004). In vitro propagation of Zingiber petiolatum (Holttum) I. Theilade, A rare Zingiberaceous plant from Thailand. Journal of In Vitro Cell Development Biology Plant, 40, 317–320.CrossRefGoogle Scholar
  85. Priya, R. S., & Subramanian, R. B. (2008). Isolation and molecular analysis of R-gene in resist- ant Zingiber officinale (ginger) varieties against Fusarium oxysporum f.sp. zingiberi. Bioresource Technology, 99, 4540–4543.CrossRefGoogle Scholar
  86. Rajani, H., & Patil, S. S. (2009). In vitro responses of different explants types on shoot and root development of ginger. Acta Horticulturae, 829, 349–353.CrossRefGoogle Scholar
  87. Ramachandran, K., & Chandrashekaran, P. N. (1992). In vitro roots and rhizomes from anther explants of ginger. Journal of Spices and Aromatic Crops, 1(1), 72–74.Google Scholar
  88. Ravindran, P. N., Babu, K. N., Saji, K. V., Geetha, S. P., Praveen, K., & Yamuna, G. (2004). Conservation of spices genetic resources in vitro gene banks (p. 81). Calicut: ICAR Project Report. Indian Institute of Spices Research.Google Scholar
  89. Renner, T., Bragg, J., Driscoll, H. E., Cho, J., Jackson, A. O., & Specht, C. D. (2009). Virus-induced gene silencing in the culinary ginger (Zingiber officinale): An effective mechanism for down-regulating gene expression in tropical monocots. Molecular Plant, 2, 1084–1094.PubMedCrossRefGoogle Scholar
  90. Rout, G. R., Das, P., Goel, S., & Raina, S. N. (1998). Determination of genetic stability of micro- propagated plants of ginger using random amplified polymorphic DNA (RAPD) markers. Botanical Bulletin- Academia Sinica, 389(1), 23–29.Google Scholar
  91. Rout, G. R., Palai, S. K., Samantaray, S., & Das, P. (2001). Effect of growth regulator and culture conditions on shoot multiplication and rhizome formation in ginger (Zingiber officinale Rosc.) in vitro. In Vitro Cell Development Biology Plant, 37(6), 814–819.CrossRefGoogle Scholar
  92. Sajina, A., Mini, P. M., John, C. Z., Babu, K. N., Ravindran, P. N., & Peter, K. V. (1997). Micropropagation of large cardamom (Amomum subulatum Roxb.). Journal of Spices and Aromatic Crops, 6, 145–148.Google Scholar
  93. Sakamura, F., Oghihara, K., Suga, T., Taniguchi, K., & Tanaka, R. (1986). Volatile constituents of Zingiber officinale rhizome produced by in vitro shoot tip culture. Phytochemical, 25(6), 1333–1335.CrossRefGoogle Scholar
  94. Samsudeen, K. (1996). Studies on Somaclonal Variation Produced by In Vitro Culture in Zingiber officinale Rosc. Ph.D. Thesis, University of Calicut, Calicut, Kerala State.Google Scholar
  95. Sasikumar, B., Zacharariah, J. (2003). Organization of ginger and turmeric germplasm based on molecular characterization. In: Final Report ICAR Ad Hoc Project IISR, Calicut, Kerala State.Google Scholar
  96. Semagn, K., Bjornstad, A., & Ndjiondjop, M. N. (2006). An overview of molecular marker methods for plants. African Journal of Biotechnology, 5, 2540–2568.Google Scholar
  97. Sharma, T. R., & Singh, B. M. (1995a). Simple and cost-effective medium for propagation of ginger (Zingiber officinale). Indian Journal of Agricultural Sciences, 65, 506–508.Google Scholar
  98. Sharma, T. R., & Singh, B. M. (1995b). In vitro micro rhizome production in Zingiber officinale Roscoe. Plant Cell Reports, 15, 274–277.PubMedCrossRefPubMedCentralGoogle Scholar
  99. Sharma, T. R., Singh, B. M., & Chauhan, R. S. (1994). Production of encapsulated buds of Zingiber officinale Roscoe. Plant Cell Reports, 13, 300–302.PubMedCrossRefPubMedCentralGoogle Scholar
  100. Silva, M. F., da Pescador, R., Rebelo, R. A., & Stumer, S. L. (2008). The affect of arbuscular mycorrhizal fungal isolates on the development and oleoresin production of micropropagated zingiber officinale. Brazilian Journal of Plant Physiology, 20, 119–130.CrossRefGoogle Scholar
  101. Smith, M. K., & Hamill, S. D. (1996). Field evaluation of micropropagated and conventionally propagated ginger in subtropical Queensland. Australian Journal of Experimental Agriculture, 36, 347–354.CrossRefGoogle Scholar
  102. Smith, M. K., Hamill, S. D., Gogel, B. J., & Severn-Ellis, A. A. (2004). Ginger (Zingiber officinale) autotetraploid with improved processing quality produced by an in vitro colchicines treatment. Australian Journal of Experimental Agriculture, 44, 1065–1072.CrossRefGoogle Scholar
  103. Steward, F. C., Mapes, M. O., & Mears, J. S. (1958). Growth and organized development of cultured cells. II Organization in cultures grown from freely suspended cells. American Journal of Botany, 45, 705–708.CrossRefGoogle Scholar
  104. Sultana, A., Hassan, L., Ahmad, S. D., Shah, A. H., Batool, F., Rahman, R., et al. (2009). In vitro regeneration of ginger using leaf, shoot tip and root explants. Pakistan Journal of Botany, 41, 1667–1676.Google Scholar
  105. Suma, B., Keshavachandran, R., & Nybe, E. V. (2008). Agrobacterium tumefaciens mediated transformation and regeneration of ginger (Zingiber officinale Rosc.). Journal of Tropical Agriculture, 46, 38–44.Google Scholar
  106. Sumathi, V. (2007). Studies on Somaclonal Variation in Zingiberaceous Crops. Ph.D. Thesis, Calicut University, Calicut, Kerala State, p. 227.Google Scholar
  107. Sundararaj, G., Anuradha, A., & Rishi, K. T. (2010). Encapsulation for in vitro short-term storage and exchange of ginger (Zingiber officinale Rosc.) germplasm. Scientia Horticulturae, 125, 761–766.CrossRefGoogle Scholar
  108. Tashiro, Y., Onimaru, H., Shigyo, M., Isshiki, S., & Miyazaki, S. (1995). Isozyme mutations induced by treatment of cultured shoot tips with alkylating agent in ginger cultivars (Zingiber officinale Rosc.). Bulletin of the Faculty of Agriculture Saga University, 79, 29–35.Google Scholar
  109. Tauqeer, A., Nazreen, Z., & Khan, N. H. (2007). Enhanced Zingiber officinale shoot multiplication in liquid culture. Pakistan Journal of Scientific and Industrial Research, 50, 145–148.Google Scholar
  110. Thomas, E. G., Aswati Nair, R., Sabu, M., & George, T. (2010). Molecular evolution of a PR-5 protein gene in Zingiber species with contrasting breeding systems. In: Proceedings of International Symposium on Biocomputing No 45.Google Scholar
  111. Tilad, P., Sharma, R., & Singh, B. M. (2002). Salicylic acid induced insensitivity to culture filtrate of Fusarium oxysporum f. sp. Zingiberi in the calli of Zingiber officinale Roscoe. European Journal of Plant Pathology, 108, 31–39.CrossRefGoogle Scholar
  112. Tyagi, R. K., Bhat, S. R., & Chandel, K. P. S. (1998). In vitro conservation strategies for species crop germplasm: Zingiber, Curcuma and Piper species. In N. M. Mathew & C. K. Jacob (Eds.), Developments in plantation crop research (pp. 77–82). New Delhi: Allied Publishers Limited.Google Scholar
  113. Tyagi, R. K., Agarwal, A., & Yusuf, A. (2006). Conservation of Zingiber germplasm through in vitro rhizome formation. Scientia Horticulturae, 108, 210–219.CrossRefGoogle Scholar
  114. Valsala, P. A., Nair, G. S., & Nazeem, P. A. (1996). Seed set in ginger (Zingiber officinale Rosc.) through in vitro pollination. Journal of Tropical Agriculture, 34, 81–84.Google Scholar
  115. Wahyuni, S., Xu, D. H., Bermawie, N., Tsunematsu, H., & Ban, T. (2003). Genetic relationships among ginger accessions based on AFLP marker. Journal of Bioteknologi Pertanian, 8, 60–68.Google Scholar
  116. Wang, M., Niu, Y., Song, M., & Tang, Q. L. (2010). Tetraploid of Zingiber officinale Roscoe. in vitro inducement and its morphology analysis. China Vegetables DOI: CNKI: SUN: ZGSC. O.2010-04-013.Google Scholar
  117. Xuan, P., Guo, Y., Yue, C., & Yin, C. (2004). Study on tissue culture and rapid propagation of ginger (Zingiber officinale). Southwest China Journal of Agriculture, 17, 484–486.Google Scholar
  118. Yamuna, G. (2007). Studies on cryopreservation of spices genetic resources. Ph.D. Thesis, Calicut University, Calicut, Kerala State.Google Scholar
  119. Yamuna, G., Sumathi, V., Geetha, S. P., Praveen, K., Swapna, N., & Babu, K. N. (2007). Cryopreservation of in vitro grown shoot of ginger (Zingiber officinale Rosc). Cryo Letters, 28, 241–252.PubMedPubMedCentralGoogle Scholar
  120. Yeoman, M. M. (1987). Bypassing the plant. Annals of Botany, 60, 175–188.CrossRefGoogle Scholar
  121. Yua, F., Haradab, H., Yamasakia, K., Okamotoa, S., Hirasec, S., Tanakac, Y., et al. (2008). Isolation and functional characterization of a β-eudesmol synthase, a new sesquiterpene synthase from Zingiber zerumbet Smith. FEBS Letters, 582, 565–572.CrossRefGoogle Scholar
  122. Zarate, R., & Yeoman, M. M. (1996). Changes in the amounts of (6) gingerol and derivatives during a culture cycle of ginger, Zingiber officinale. Plant Science (Limerick), 121, 115–122.CrossRefGoogle Scholar
  123. Zheng, Y., Liu, Y., Ma, M., & Xu, K. (2008). Increasing in vitro microrhizome production in ginger (Zingiber officinale Roscoe.). Acta Physiology Plant, 1, 519–523.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Kodoth Prabhakaran Nair
    • 1
  1. 1.International Agricultural ScientistCalicutIndia

Personalised recommendations