Advertisement

Protein/Emulsifier Interactions

  • Tommy NylanderEmail author
  • Thomas Arnebrant
  • Marité Cárdenas
  • Martin Bos
  • Peter Wilde
Chapter

Abstract

An important consequence of protein-lipid interaction is the effect on stability of the protein in solution as well as on its behavior at interfaces. Here we will discuss key aspects of protein aggregation and unfolding as well as the effects of protein structure (random coil proteins versus globular) that are relevant for our understanding protein-lipid interaction. The main types of emulsifiers are the (1) aqueous soluble, surfactant type and (2) lipids with low aqueous solubility. The monomer concentration as defined by cmc is an important parameter for the soluble lipids. For emulsifiers with low aqueous solubility the emulsifier self-assembly structure and its properties control the interaction with proteins. We will therefore summarize the main features of lipid self-assembly. It also allows us to define different plausible scenarios and principles and models for factors that control the interactions in real food (and Pharmaceutical) systems. For the food applications the fate of the lipid during digestion is important and therefore we will discuss some aspects of enzyme-catalyzed lipolysis in terms of the structural evolution. New products and concepts of using protein/emulsifier interactions will be exemplified by illustrating how food nanotechnology possibly can be used for the delivery of functionality.

Keywords

Lipid liquid crystalline phases Polar lipids Lipid self-assembly Protein unfolding Lipid aqueous interface Protein lipid interactions Emulsions Foam 

References

  1. Ahlers M, Müller W, Reichert A, Ringsdorf H, Venzmer J (1990) Specific interactions of proteins with functional lipid monolayers – ways of simulating biomembrane process. Angew Chem Int Ed Engl 29:1269–1285CrossRefGoogle Scholar
  2. Al Kayal T, Nappini S, Russo E, Berti D, Bucciantini M, Stefani M, Baglioni P (2012) Lysozyme interaction with negatively charged lipid bilayers: protein aggregation and membrane fusion. Soft Matter 8:4524–4534CrossRefGoogle Scholar
  3. Almgren M, Rangelov S (2006) Polymorph dispersed particles from the bicontinuous cubic phase of glycerol monooleate stabilized by PEG-copolymers with lipid-mimetic hydrophobic anchors. J Dispers Sci Technol 27(5):599–609CrossRefGoogle Scholar
  4. Almsherqi ZA, Landh T, Kohlwein SD, Deng YR (2009) Cubic membranes: The missing dimension of cell membrane organization. International review of cell and molecular biology. International review of cell and molecular biology, vol 274. Elsevier Academic Press Inc., San Diego, pp 275–342Google Scholar
  5. Ananthapadmanabhan KP (1993) Protein-surfactant interactions. In: Ananthapadmanabhan KP, Goddard ED (eds) Interactions of surfactants with polymers and proteins. CRC Press, Boca Raton, FL, pp 319–366Google Scholar
  6. Andersson S, Hyde ST, Larsson K, Lidin S (1988) Minimal surfaces and structures: from inorganic and metal crystals to cell membranes and biopolymers. Chem Rev 88:221–242CrossRefGoogle Scholar
  7. Angelov B, Angelova A, Papahadjopoulos-Sternberg B, Lesieur S, Sadoc JF, Ollivon M, Couvreur P (2006) Detailed structure of diamond-type lipid cubic nanoparticles. J Am Chem Soc 128(17):5813–5817PubMedCrossRefPubMedCentralGoogle Scholar
  8. Angelova A, Angelov B, Papahadjopoulos-Sternberg B, Ollivon M, Bourgaux C (2005) Proteocubosomes: nanoporous vehicles with tertiary organized fluid interfaces. Langmuir 21(9):4138–4143PubMedCrossRefPubMedCentralGoogle Scholar
  9. Aynié S, Le Meste M, Colas B, Lorient D (1992) Interactions between lipids and milk proteins in emulsion. J Food Sci 57(4):883–887CrossRefGoogle Scholar
  10. Backstrom K, Lindman B, Engstrom S (1988) Removal of triglycerides from polymer surface in relation to surfactant packing – ellipsometer studies. Langmuir 4(4):872–878CrossRefGoogle Scholar
  11. Barauskas J, Anderberg H, Svendsen A, Nylander T (2016) Thermomyces lanuginosus lipase catalyzed hydrolysis of the lipid cubic liquid crystalline nanoparticles. Colloids Surf B Biointerfaces 137:50–59PubMedCrossRefGoogle Scholar
  12. Barauskas J, Cervin C, Tiberg F, Johnsson M (2009) Structure of lyotropic self-assembled lipid nonlamellar liquid crystals and their nanoparticles in mixtures of phosphatidyl choline and α-tocopheril (vitamin E). Phys Chem Chem Phys 10:6483–6485CrossRefGoogle Scholar
  13. Barauskas J, Johnsson M, Johnson F, Tiberg F (2005a) Cubic phase nanoparticles (Cubosome): principles for controlling size, structure, and stability. Langmuir 21(6):2569–2577PubMedCrossRefGoogle Scholar
  14. Barauskas J, Johnsson M, Nylander T, Tiberg F (2006a) Hexagonal liquid-crystalline nanoparticles in aqueous mixtures of glyceryl monooleyl ether and pluronic F127. Chem Lett 35(8):830–831CrossRefGoogle Scholar
  15. Barauskas J, Johnsson M, Tiberg F (2005b) Self-assembled lipid superstructures: beyond vesicles and liposomes. Nano Lett 5(8):1615–1619PubMedCrossRefGoogle Scholar
  16. Barauskas J, Landh T (2003) Phase behavior of the phytantriol/water system. Langmuir 19:9562–9565CrossRefGoogle Scholar
  17. Barauskas J, Misiunas A, Gunnarsson T, Tiberg F, Johnsson M (2006b) “Sponge” nanoparticle dispersions in aqueous mixtures of diglycerol monooleate, glycerol dioleate, and polysorbate 80. Langmuir 22(14):6328–6334PubMedCrossRefGoogle Scholar
  18. Barauskas J, Nylander T (2008) Lyotropic liquid crystals as delivery vehicles for food ingredients. In: Garti N (ed) Delivery and controlled release of bioactives in foods and nutraceuticals. Woodhead Publishing, Cambridge, pp 107–131CrossRefGoogle Scholar
  19. Barauskas J, Razumas V, Nylander T (2000) Entrapment of glucose oxidase into the cubic Q230 and Q224 phases of aqueous monoolein. Progr Colloid Polym Sci 116:16–20CrossRefGoogle Scholar
  20. Baruskas J, Razumas V, Nylander T (1999) Solubilization of ubiqinone-10 in the lamellar and bicontinous cubic phases of aqueous monoolein. Chem Phys Lipids 97:167–179CrossRefGoogle Scholar
  21. Benichou A, Aserin A, Garti N (2002) Protein-polysaccharide interactions for stabilization of food emulsions. J Dispers Sci Technol 23(1–3):93–123CrossRefGoogle Scholar
  22. Benjamins JW, Thuresson K, Nylander T (2005) Formation of a liquid crystalline phase from phosphatidylcholine at the oil-aqueous interface. Langmuir 21(7):2804–2810.  https://doi.org/10.1021/La048957tCrossRefPubMedGoogle Scholar
  23. Biswas SC, Marion D (2006) Interaction between puroindolines and the major polar lipids of wheat seed endosperm at the air-water interface. Colloids Surf B Biointerfaces 53(2):167–174PubMedCrossRefGoogle Scholar
  24. Blomqvist BR, Ridout MJ, Mackie AR, Warnheim T, Claesson PM, Wilde P (2004) Disruption of viscoelastic beta-lactoglobulin surface layers at the air-water interface by nonionic polymeric surfactants. Langmuir 20(23):10150–10158CrossRefGoogle Scholar
  25. Blomqvist BR, Wilde P, Claesson PM (2006) Competitive destabilization/stabilization of beta-lactoglobulin foam by PEO-PPO-PEO polymeric surfactants. J Dispers Sci Technol 27(4):527–536CrossRefGoogle Scholar
  26. Bohnert JL, Horbett TA (1986) Changes in adsorbed fibrinogen and albumin interactions with polyers indicated by decrease in detergent elutability. J Colloid Interface Sci 111(2):363–378CrossRefGoogle Scholar
  27. Borné J, Nylander T, Khan A (2001) Phase behavior and aggregate formation for the aqueous monoolein system mixed with sodium oeate and oleic acid. Langmuir 17:7742–7751CrossRefGoogle Scholar
  28. Borné J, Nylander T, Khan A (2002a) Effect of lipase on different lipid liquid crystalline phases formed by oleic acid based acyl glycerols in aqueous systems. Langmuir 18:8972–8981CrossRefGoogle Scholar
  29. Borné J, Nylander T, Khan A (2002b) Effect of lipase on monoolein-based cubic phase dispersion (cubosomes) and vesicles. J Phys Chem B 106(40):10492–10500CrossRefGoogle Scholar
  30. Bos M, Nylander T (1995) The interaction between β-lactoglobulin and phospholipids at the air/water interface. Langmuir 12:112791–112797Google Scholar
  31. Bos M, Nylander T, Arnebrant T, Clark DC (1997) Protein/emulsifier interactions. In: Hasenhuettl GL, Hartel RW (eds) Food emulsifiers and their applications. Chapman and Hall, New York, pp 95–146CrossRefGoogle Scholar
  32. Bos MA, van Vliet T (2001) Interfacial rheological properties of adsorbed protein layers and surfactants: a review. Adv Colloid Interf Sci 91(3):437–471CrossRefGoogle Scholar
  33. Boström M, Williams DRM, Ninham BW (2001) Specific ion effects: why DLVO theory fails for biology and colloid systems. Phys Rev Lett 87:168103PubMedCrossRefGoogle Scholar
  34. Boström M, Williams DRM, Ninham B (2002) Influence of Hofmeister effects on surface pH and binding of peptides to membranes. Langmuir 18:8609–8615CrossRefGoogle Scholar
  35. Boyd BJ, Whittaker DV, Khoo SM, Davey G (2006) Hexosomes formed from glycerate surfactants – formulation as a colloidal carrier for irinotecan. Int J Pharm 318(1–2):154–162PubMedCrossRefGoogle Scholar
  36. Brash JL, Hove P (1984) Effect of plasma dilution on adsorption of fibrinogen to solid surfaces. Thromb Haemost 51:326–330PubMedCrossRefGoogle Scholar
  37. Brennan JL, Kanaras AG, Nativo P, Tshikhudo TR, Rees C, Fernandez LC, Dirvianskyte N, Razumas V, Skjot M, Svendsen A, Jorgensen CI, Schweins R, Zackrisson M, Nylander T, Brust M, Barauskas J (2010) Enzymatic activity of lipase-nanoparticle conjugates and the digestion of lipid liquid crystalline assemblies. Langmuir 26:13590–13599PubMedCrossRefGoogle Scholar
  38. Briggs J, Chung H, Caffrey M (1996) The temperature-composition phase diagram and mesophase structure characterization of the monoolein/water system. J Phys II France 6:723–751CrossRefGoogle Scholar
  39. Brooksbank DV, Leaver J, Horne DS (1993) Adsorption of milk proteins to phosphatidylglycerol and phosphatidylcholine liposomes. J Colloid Interface Sci 161:38–42CrossRefGoogle Scholar
  40. Brown EM (1984) Interactions of β-lactoglobulin with lipids: a review. J Dairy Sci 67:713–722CrossRefGoogle Scholar
  41. Brown EM, Caroll RJ, Pfeffer PE, Sampugna J (1983) Complex formation in sonicated mixtures of β-lactoglobulin and phosphatidylcholine. Lipids 18:111–118CrossRefGoogle Scholar
  42. Buckingham JH, Lucassen J, Giles D (1978) Surface properties of mixed solutions of poly-l-lysine and sodium dodecyl sulfate. J Colloid Interface Sci 67(3):423–431CrossRefGoogle Scholar
  43. Bychokova VE, Pain RH, Ptitsyn OB (1988) The ‘molten globule’ state is involved in the translocation across membranes? FEBS Lett 238(2):231–234CrossRefGoogle Scholar
  44. Bylaite E, Nylander T, Venskutonis R, Jönsson B (2001) Emulsification of caraway essential oil in water by lecithin and β-lactoglobulin – emulsion stability and properties of the formed oil-aqueous interface. Colloids Surf B Biointerfaces 20:327–340PubMedCrossRefGoogle Scholar
  45. Caboi F, Amico GS, Pitzalis P, Monduzzi M, Nylander T, Larsson K (2001) Addition of hydrophilic and lipophilic compounds of biological relevance to the monoolein:water system. I. Phase behavior. Chem Phys Lipids 109:47–62PubMedCrossRefGoogle Scholar
  46. Caboi F, Borné J, Nylander T, Khan A, Svendsen A, Patkar S (2002) Lipase action on a monoolein/sodium oleate aqueous cubic liquid crystalline phase – a NMR and X-ray diffraction study. Colloids Surf B Biointerfaces 26:159–171CrossRefGoogle Scholar
  47. Caboi F, Nylander T, Razumas V, Talaikyté Z, Monduzzi M, Larsson K (1997) Structural effects, mobility and redox behavior of Vitamin K1 hosted in the monoolein-water liquid crystalline phases. Langmuir 13:5476–5483CrossRefGoogle Scholar
  48. Caffrey M (2015) A comprehensive review of the lipid cubic phase or in meso method for crystallizing membrane and soluble proteins and complexes. Acta Cryst F71:3–18Google Scholar
  49. Campioni S, Carret G, Jordens S, Nicoud L, Mezzenga R, Riek R (2014) The presence of an air-water interface affects formation and elongation of alpha-synuclein fibrils. J Am Chem Soc 136(7):2866–2875.  https://doi.org/10.1021/ja412105tCrossRefPubMedGoogle Scholar
  50. Carlsson A, Bergqvist M, Nilsson R, Nylander T (1995) Digalactosyldiacylglycerol – a new excipient in drug formulation. Progress in drug delivery system IV. Biomedical Research Foundation, Tokyo, pp 105–115Google Scholar
  51. Castle J, Dickinson E, Murray BS, Stainsby G (1987) Mixed-protein films adsorbed at the oil-water interface. ACS Symp Ser 343:118–134CrossRefGoogle Scholar
  52. Chae PS, Rasmussen SGF, Rohini Rana R, Gotfryd K, Chandra R, Goren MA, Kruse AC, Nurva S, Loland CJ, Pierre Y, Drew D, Popot J-L, Picot D, Fox BG, Guan L, Gether U, Byrne B, Kobilka B, Gellman SH (2010) Maltose-neopentyl glycol (MNG) amphiphiles for solubilization, stabilization and crystallization of membrane proteins. Nat Methods 7:1003–1008PubMedPubMedCentralCrossRefGoogle Scholar
  53. Chen J, Dickinson E (1993) Time-dependent competetive adsorption of milk proteins and surfactants in oil-in-water emulsions. J Sci Food Agric 62:283–289CrossRefGoogle Scholar
  54. Chen J, Dickinson E (1995a) Protein/surfactant interactions Part 1. Flocculation of emulsions containing mixed protein + surfactant. Colloids Surf A Physicochem Eng Aspects 100:255–265CrossRefGoogle Scholar
  55. Chen J, Dickinson E (1995b) Protein/surfactant interactions Part 2. Electrophoretic mobility of mixed protein + surfactant systems. Colloids Surf A Physicochem Eng Aspects 100:267–277CrossRefGoogle Scholar
  56. Chen J, Dickinson E (1995c) Protein/surfactant interfacial interactions. Part 3. Competitive adsorption of protein + surfactant in emulsions. Colloids Surf A Physicochem Eng Aspects 101:77–85CrossRefGoogle Scholar
  57. Chen J, Dickinson E, Iveson G (1993) Interfacial interactions, competitive adsorption and emulsion stability. Food Struct 12:135–146Google Scholar
  58. Chernomordik L (1996) Non-bilayer lipids and biological fusion intermediates. Chem Phys Lipids 81:203–213PubMedCrossRefPubMedCentralGoogle Scholar
  59. Chupin V, Killian JA, De Kruijff B (1987) 2H-Nuclear magnetic resononance investigations on phospholipid acyl chain order and dynamics in the gramicidin-induced hexagonal HII phase. Biophys J 51:395–405PubMedPubMedCentralCrossRefGoogle Scholar
  60. Clark DC (1995) Application of state-of-the-art fluorescence and interferometric technique to study coalescence in food dispersions. In: Goankar A (ed) Characterisation of food: emerging methods. Elsevier, Amsterdam, pp 23–57CrossRefGoogle Scholar
  61. Clark DC, Coke M, Wilde PJ, Wilson DR (1991b) Molecular diffusion at interfaces and its relation to dispersed phase stability. In: Dickinson E (ed) Food, polymers, gels and colloids. Royal Society of Chemistry, London, pp 272–278CrossRefGoogle Scholar
  62. Clark DC, Dann R, Mackie AR, Mingins J, Pinder AC, Purdy PW, Russell EJ, Smith LJ, Wilson DR (1990) Surface-diffusion in sodium dodecyl sulfate-stabilized thin liquid-films. J Colloid Interface Sci 138(1):195–206CrossRefGoogle Scholar
  63. Clark DC, Husband F, Wilde PJ, Cornec M, Miller R, Krägel J, Wüstneck R (1995) Evidence of extraneous surfactant adsorption altering adsorbed layer properties of β-lactoglobulin. J Chem Soc Faraday Trans 91(13):1991–1996CrossRefGoogle Scholar
  64. Clark DC, Mackie AR, Wilde PJ, Wilson DR (1994a) Differences in the structure and dynamics of the adsorbed layers in protein stabilized model foams and emulsions. Faraday Discuss 98:253–262CrossRefGoogle Scholar
  65. Clark DC, Wilde PJ, Bergink-Martens D, Kokelaar A, Prins A (1993) Differences in the structure and dynamics of the adsorbed layers in protein stabilised model foams and emulsions. In: Dickinson E, Walstra P (eds) Food colloids and polymers: structure and dynamics, vol 113. Royal Society of Chemistry Special Publication, Cambridge, pp 354–364Google Scholar
  66. Clark DC, Wilde PJ, Marion D (1994b) The protection of beer foam against lipid-induced destabilization. J Inst Brew 100(1):23–25CrossRefGoogle Scholar
  67. Clark DC, Wilde PJ, Wilson DR (1991a) Destabilization of α-lactalbumin foams by competitive adsorption of the surfactant Tween 20. Colloids Surf 59:209–223CrossRefGoogle Scholar
  68. Clark DC, Wilde PJ, Wilson DR, Wustneck R (1992) The interaction of sucrose esters with β-lactoglobulin and β-casein from bovine milk. Food Hydrocoll 6:173–186CrossRefGoogle Scholar
  69. Coke M, Wilde PJ, Russell EJ, Clark DC (1990) The influence of surface composition and molecular diffusion on the stability of foams formed from protein/surfactant mixtures. J Colloid Interface Sci 138(2):489–504CrossRefGoogle Scholar
  70. Conn CE, Darmanin C, Mulet X, Hawleyd A, Drummond CJ (2012) Effect of lipid architecture on cubic phase susceptibility to crystallisation screens. Soft Matter 8:6884–6896CrossRefGoogle Scholar
  71. Cordoba J, Reboiras MD, Jones MN (1988) Interaction of n-octyl-β-d-glucopyranoside with globular proteins in aquoeus solution. Int J Biol Macromol 10:270–276CrossRefGoogle Scholar
  72. Corkery RW (2002) The anti-parallel, extended or splayed-chain conformation of amphiphilic lipids. Collloids Surfaces B: Biointerfaces 26:3–20CrossRefGoogle Scholar
  73. Cornell DG (1982) Lipid-protein interactions in monolayers: egg yolk phosphatidic acid and β-lactoglobulin. J Colloid Interface Sci 88:536–545CrossRefGoogle Scholar
  74. Cornell DG, Caroll RJ (1985) Miscibility in lipid-protein monolayers. J Colloid Interface Sci 108:226–233CrossRefGoogle Scholar
  75. Cornell DG, Patterson DL (1989) Interaction of phospholipids in monolayers with β-lactoglobulin adsorbed from solution. J Agric Food Chem 37:1455–1459CrossRefGoogle Scholar
  76. Cornell DG, Patterson DL, Hoban N (1990) The interaction of phospholipids in monolayers with bovine serum albumin and α-lactalbumin adsorbed from solution. J Colloid Interface Sci 140:428–435CrossRefGoogle Scholar
  77. Courthaudon JL, Dickinson E, Christie WW (1991) Competitive adsorption of lecithin and β-casein in oil-in-water emulsions. J Agric Food Chem 39:1365–1368CrossRefGoogle Scholar
  78. Cowley AC, Fuller NL, Rand RP, Parsegian VA (1978) Measurements of repulsive forces between charged phospholipid bilayers. Biochemistry 17:3163–3168PubMedCrossRefPubMedCentralGoogle Scholar
  79. Creighton TE (1990) Protein folding. Biochem J 270:1–16PubMedPubMedCentralCrossRefGoogle Scholar
  80. Creighton TE (1993) Proteins – structure and molecular properties2nd edn. W. H. Freeman, New YorkGoogle Scholar
  81. Danthine S, Blecker C, Paquot M, Innocente N, Deroanne C (2000) Progress in milk fat globule membrane research: a review. Lait 80:209–222CrossRefGoogle Scholar
  82. Day L, Golding M, Xua M, Keogh J, Clifton P, Wooster TJ (2014) Tailoring the digestion of structured emulsions using mixed monoglyceride-caseinate interfaces. Food Hydrocoll 36:151–161CrossRefGoogle Scholar
  83. De Kruijff B (1997) Lipid polymorphism and biomembrane function. Curr Opin Colloid Interface Sci 1:564–569Google Scholar
  84. De Kruijff B, Cullis PR (1980) Cytochrome s specifically induces non-bilayer structuers in cardiolipin containing model membranes. Biochim Biophys Acta 602:477–490PubMedCrossRefPubMedCentralGoogle Scholar
  85. de Wit JN (1989) Functional properties of whey proteins. In: Fox PF (ed) Developments in dairy chemistry, vol 4. Elsevier Applied Science, London, pp 285–322Google Scholar
  86. Deng YR, Almsherqi ZA, Shui GH, Wenk MR, Kohlwein SD (2009) Docosapentaenoic acid (DPA) is a critical determinant of cubic membrane formation in amoeba Chaos mitochondria. FASEB J 23(9):2866–2871.  https://doi.org/10.1096/fj.09-130435CrossRefPubMedPubMedCentralGoogle Scholar
  87. Dickinson E (1993) Proteins in solution an at interfaces. In: Ananthapadmanabhan KP, Goddard ED (eds) Interactions of surfactants with polymers and proteins. CRC Press, Boca Raton, FL, pp 295–317Google Scholar
  88. Dickinson E (1996) Biopolymer interactions in emulsion systems: influences on creaming, flocculation, and rheology. Macromolecular interactions in food technology. ACS Symposium Series, vol 650. ACS, Washington, DC, pp 197–207CrossRefGoogle Scholar
  89. Dickinson E (1999) Adsorbed protein layers at fluid interfaces: interactions, structure and surface rheology. Colloid Surf B Biointerfaces 15:161–176CrossRefGoogle Scholar
  90. Dickinson E (2003) Hydrocolloids at interfaces and the influence on the properties of dispersed systems. Food Hydrocoll 17(1):25–39CrossRefGoogle Scholar
  91. Dickinson E, Iveson G (1993) Adsorbed films of β-lactoglobulin + lecithin at the hydrocarbon-water and triglyceride – water interfaces. Food Hydrocoll 6:533–541CrossRefGoogle Scholar
  92. Dickinson E, Matsumura Y (1991) Time-dependent polymerization of β-lactoglobulin throuhg disulphide bonds at the oil-water interface in emulsions. Int J Biol Macromol 13:26–30PubMedCrossRefPubMedCentralGoogle Scholar
  93. Dickinson E, Matsumura Y (1994) Proteins at liquid interfaces: role of the molten globule state. Colloids Surf B Biointerfaces 3:1–17CrossRefGoogle Scholar
  94. Dickinson E, Stainsby G (1982) Colloids in food. Applied Science Publishers, LondonGoogle Scholar
  95. Dickinsson ED, Woskett CM (1989) Competitive adsorption between proteins and small molecular surfactants in food emulsions. In: Bee RD, Richmond P, Mingins J (eds) Food and colloids. Royal Society of Chemistry, London, pp 74–96Google Scholar
  96. Diederich A, Sponer C, Pum D, Sleytr UB, Lösche M (1996) Reciprocal influence between the protein and lipid components of a lipid-protein membrane model. Colloids Surf B Biointerfaces 6:335–346CrossRefGoogle Scholar
  97. Dill KA (1990) Dominant forces in protein folding. Biochemistry 29:7133–7155PubMedCrossRefPubMedCentralGoogle Scholar
  98. Dolgikh DA, Abaturov LV, Bolotina IA, Brazhnikov EV, Bychkova VE, Gilmanshin RI, Lebedev YO, Semisotnov GV, Tiktopulo EI, Ptitsyn OB (1985) Compact state of a protein molecule with pronounced small-scale mobility: bovine α-lactalbumin. Eur Biophys J 13:109–121PubMedCrossRefPubMedCentralGoogle Scholar
  99. Dolgikh DA, Gilmanshin RI, Brazhnikov EV, Bychkova VE, Semisotnov GV, Venyaminov SY, Ptitsyn OB (1981) α-Lactalbumin: compact state with fluctuating tertiary structure? FEBS Lett 136(2):311–315PubMedCrossRefPubMedCentralGoogle Scholar
  100. Du Y-K, An J-Y, Tang J, Li Y, Jiang L (1996) A study of the interaction between glucolipids of different hydrophobicities and glucos oxidase by a monolayer technique. Colloid Surf B Biointerfaces 7:129–133CrossRefGoogle Scholar
  101. Dubreil L, Compoint JP, Marion D (1997) Interaction of puroindolines with wheat flour polar lipids determines their foaming properties. J Agric Food Chem 45(1):108–116CrossRefGoogle Scholar
  102. Dunstan DE, Hamilton-Brown P, Asimakis P, Ducker W, Bertolini J (2009) Shear-induced structure and mechanics of β-lactoglobulin amyloid fibrils. Soft Matter 5:5020–5028CrossRefGoogle Scholar
  103. Elwing H, Askendal A, Lundstrom I (1989) Desorption of fibrinogen and γ-globulin from solid surface induced by a nonionic detergent. J Colloid Interface Sci 128(1):296–300CrossRefGoogle Scholar
  104. Elwing H, Golander CG (1990) Protein and detergent interaction phenomena on solid surface with gradients in chemical composition. Adv Colloid Interf Sci 32(4):317–339CrossRefGoogle Scholar
  105. Engblom J, Miezis Y, Nylander T, Razumas V, Larsson K (2000) On the swelling of monoolein liquid-crystalline aqueous phases in the presence of distearoylphosphatidylglycerol. Progr Colloid Polym Sci 116:9–15CrossRefGoogle Scholar
  106. Engel MFM, van Mierlo CPM, Visser AJWG (2002) Kinetic and structural characterization of adsorption-induced unfolding of bovine alpha -lactalbumin. J Biol Chem 277(13):10922–10930.  https://doi.org/10.1074/jbc.M106005200CrossRefPubMedGoogle Scholar
  107. Epand RM, D'Souza K, Berno B, Schlame M (2015) Membrane curvature modulation of protein activity determined by NMR. Biochim Biophys Acta 1848:220–228PubMedCrossRefGoogle Scholar
  108. Ericsson B (1986) Interactions between globular proteins and lipids. University of Lund, LundGoogle Scholar
  109. Ericsson B, Hegg P-O (1985) Surface behaviour of adsorbed films from protein-amphiphile mixtures. Progr Colloid Polym Sci 70:92–95CrossRefGoogle Scholar
  110. Ericsson B, Hegg P-O, Mårtensson K (1983a) Protection of ovalbumin against irreversible heat denaturation by cationic amphiphile at high concentration. J Food Technol 18:11–19CrossRefGoogle Scholar
  111. Ericsson B, Hegg P-O, Mårtensson K (1987a) Effect on cationic amphiphiles and temperature on lysozyme conformation. J Dispers Sci Technol 8(3):271–287CrossRefGoogle Scholar
  112. Ericsson B, Hegg P-O, Mårtensson K (1987b) Effects of amphiphiles on trypsin activity and conformation. J Dispers Sci Technol 8(3):289–301CrossRefGoogle Scholar
  113. Ericsson B, Larsson K, Fontell K (1983b) A cubic protein-monoolein-water phase. Biochim Biophys Acta 729:23–27PubMedCrossRefGoogle Scholar
  114. Esposito E, Cortesi R, Drechsler M, Paccamiccio L, Mariani P, Contado C, Stellin E, Menegatti E, Bonina F, Puglia C (2005) Cubosome dispersions as delivery systems for percutaneous administration of indomethacin. Pharm Res 22(12):2163–2173PubMedCrossRefGoogle Scholar
  115. Evans DF, Allen M, Ninham BW, Fouda A (1984b) Critical micelle concentrations for alkyltrimethylammonium bromides in water from 25 to 160 °C. J Sol Chem 13:87–101CrossRefGoogle Scholar
  116. Evans DF, Mitchell DJ, Ninham BW (1984a) Ion binding and dressed micelles. J Phys Chem 88:6344–6348CrossRefGoogle Scholar
  117. Ewers WE, Sutherland KL (1952) The role of surface transport in the stability and breakdown of foams. Australian J Sci Res Ser A5:697–710Google Scholar
  118. Fainerman VB, Lucassen-Reynders EH, Miller R (1998) Adsorption of surfactants and proteins at fluid interfaces. Colloids Surf A Physicochem Eng Aspects 143:141–165CrossRefGoogle Scholar
  119. Fang Y, Dalgleish DG (1996) Comparison of the effects of three different phosphatidylcholines on casein-stabilized oil-in-water emulsions. J Am Oil Chem Soc 73:437–442CrossRefGoogle Scholar
  120. Flockhart BD (1961) The effect of temperature on the critical micelle concentration of some paraffin-chain salts. J Colloid Interface Sci 16:484–492CrossRefGoogle Scholar
  121. Fong WK, Salentinig S, Prestidge CA, Mezzenga R, Hawley A, Boyd BJ (2014) Generation of geometrically ordered lipid-based liquid-crystalline nanoparticles using biologically relevant enzymatic processing. Langmuir 30:5373–5377PubMedCrossRefGoogle Scholar
  122. Fontell K (1990) Cubic phases in surfactant and surfactant-like lipid systems. Colloid Polym Sci 268:264–285CrossRefGoogle Scholar
  123. Fontell K (1992) Some aspects on the cubic phases in surfactant and surfactant-like lipid systems. Adv Colloid Interf Sci 41:127–147CrossRefGoogle Scholar
  124. Frapin D, Dufour E, Haertle T (1993) Probing fatty acid binding site of β-lactoglobulin. J Protein Chem 12:443–448PubMedCrossRefGoogle Scholar
  125. Fraser PE, Rand RP, Deber CM (1989) Bilayer-stabilising properties of myelin basic protein in dioleoylphosphatdiylethanolamine systems. Biochim Biophys Acta 983:23–29PubMedCrossRefGoogle Scholar
  126. Friberg S (1971) Liquid crystalline phases in emulsions. J Colloid Interface Sci 37(2):291–295CrossRefGoogle Scholar
  127. Friberg S, Mandell L, Larsson M (1969) Mesomorphous phases a factor of importance for properties of emulsions. J Colloid Interface Sci 29(1):155–161CrossRefGoogle Scholar
  128. Froberg JC, Blomberg E, Claesson PM (1999) Desorption of lysozyme layers by sodium dodecyl sulfate studied with the surface force technique. Langmuir 15(4):1410–1417CrossRefGoogle Scholar
  129. Fuertes G, Giménez D, Esteban-Martín S, García-Sáez AJ, Sánchez O, Salgado J (2010) Role of membrane lipids for the activity of pore forming peptides and proteins. Adv Exp Med Biol 677:31–55PubMedCrossRefGoogle Scholar
  130. Fukushima K, Murata Y, Nishikido N, Sugihara G, Tanaka M (1981) The binding of sodium dodecyl sulfate to lysozyme in aqueous solution. Bull Chem Soc Jpn 54:3122–3127CrossRefGoogle Scholar
  131. Fukushima K, Murata Y, Sugihara G, Tanaka M (1982) The binding of sodium dodecylsulfate to lysozyme in aqueous solution. II. The effect of added NaCl. Bull Chem Soc Jpn 55:1376–1378CrossRefGoogle Scholar
  132. Gallier S, Gragson D, Jiménez-Flores R, Everett DW (2012) β-Casein-phospholipid monolayers as model systems to understand lipid-protein interactions in the milk fat globule membrane. Int Dairy J 22:58–65CrossRefGoogle Scholar
  133. Garcia Dominguez JJ, Infante R, Erra P, Juliá R (1981) Interaction alkylsulphates-proteins and their adsorption at the water/air interphase. Tenside Detergents 18:310–313Google Scholar
  134. Gargouri Y, Julien R, Pieroni G, Verger R, Sarda L (1984b) Studies on the inhibition of pancreatic and microbial lipases by soybean proteins. J Lipid Res 25(11):1214–1221PubMedGoogle Scholar
  135. Gargouri Y, Julien R, Sugihara A, Verger R, Sarda L (1984a) Inhibition of pancreatic and microbial lipases by proteins. Biochim Biophys Acta 795(2):326–331PubMedCrossRefPubMedCentralGoogle Scholar
  136. Gargouri Y, Moreau H, Pieroni G, Verger R (1989) Role of sulphydryl group in gastric lipase. A binding study using the monomolecular film technique. Eur J Biochem 180(2):367–371PubMedCrossRefGoogle Scholar
  137. Gargouri Y, Pieroni G, Ferrato F, Verger R (1987) Human gastirc lipase – a kinetic study with dicaprin monolayers. Eur J Biochem 169(1):125–129PubMedCrossRefPubMedCentralGoogle Scholar
  138. Gargouri Y, Pieroni G, Riviere C, Sarda L, Verger R (1986) Inhibition of lipases by proteins – a binding study using dicaprin monolayers. Biochemistry 25(7):1733–1738PubMedCrossRefGoogle Scholar
  139. Gargouri Y, Pieroni G, Riviere C, Sugihara A, Sarda L, Verger R (1985) Enzynme reactions in model membranes. 8. Inhibition of lipases by proteins – a kinetic study with dicaprin monolayers. J Biol Chem 260(4):2268–2273PubMedPubMedCentralGoogle Scholar
  140. Gekko K, Hasegawa Y (1986) Compressibility-structure relationship of globular proteins. Biochemistry 25:6563–6571PubMedCrossRefGoogle Scholar
  141. Gericke A, Simon-Kutscher J, Hühnerfuss H (1993) Influence of the spreading solvent on the properties of monolayers at the air/water interface. Langmuir 9:2119–2127CrossRefGoogle Scholar
  142. Goff HD (2002) Formation and stabilisation of structure in ice-cream and related products. Curr Opin Colloid Interface Sci 7:432–437CrossRefGoogle Scholar
  143. Golding M, Wooster TJ (2010) The influence of emulsion structure and stability on lipid digestion. Curr Opin Colloid Interface Sci 15(1–2):90–101.  https://doi.org/10.1016/j.cocis.2009.11.006CrossRefGoogle Scholar
  144. Goñi FM (2014) The basic structure and dynamics of cell membranes: an update of the Singer–Nicolson model. Biochim Biophys Acta 1838:1467–1476PubMedCrossRefPubMedCentralGoogle Scholar
  145. Green FA (1971) Interactions of a nonionic detergent. II. With soluble proteins. J Colloid Interface Sci 35(3):481–485CrossRefGoogle Scholar
  146. Green RJ, Su TJ, Joy H, Lu JR (2000) Interaction of lysozyme and sodium dodecyl sulfate at the air-liquid interface. Langmuir 16:5797–5805CrossRefGoogle Scholar
  147. Green RJ, Su TJ, Lu JR, Penfold J (2001) The interaction between SDS and lysozyme at the hydrophilic solid-water interface. J Phys Chem B 105:1594–1602CrossRefGoogle Scholar
  148. Guillot S, Moitzi C, Salentinig S, Sagalowicz L, Leser ME, Glatter O (2006) Direct and indirect thermal transitions from hexosomes to emulsified micro-emulsions in oil-loaded monoglyceride-based particles. Colloids Surf A Physicochem Eng Aspects 291(1–3):78–84CrossRefGoogle Scholar
  149. Gumpen S, Hegg P-O, Martens H (1979) Thermal stability of fatty acid-serum albumin complexes studied by differential scanning calorimetry. Biochim Biophys Acta 574:189–196PubMedCrossRefPubMedCentralGoogle Scholar
  150. Gunning PA, Mackie AR, Gunning AP, Woodward NC, Wilde PJ, Morris VJ (2004) Effect of surfactant type on surfactant-protein interactions at the air-water interface. Biomacromolecules 5(3):984–991PubMedCrossRefPubMedCentralGoogle Scholar
  151. Guo XH, Chen SH (1990) The structure and thermodynamics of protein-SDS complexes in solution and the mechanism of their transports in gel electrophoresis process. Chem Phys 149:129–139CrossRefGoogle Scholar
  152. Guo XH, Zhao NM, Chen SH, Teixeira J (1990) Small-angle neutron scattering study of the structure of protein/detergent complexes. Biopolymers 29:335–346PubMedCrossRefPubMedCentralGoogle Scholar
  153. Gustafsson J, Ljusberg-Wahren H, Almgren M, Larsson K (1996) Cubic lipid-water phase dispersed into submicron particles. Langmuir 12:4611CrossRefGoogle Scholar
  154. Gustafsson J, Ljusberg-Wahren H, Almgren M, Larsson K (1997) Submicron particles of reversed lipid phases in water stabilised by a nonionic amphiphilic polymer. Langmuir 13:6964CrossRefGoogle Scholar
  155. Gutman H, Arvidson G, Fontell K, Lindblom G (1984) 31P and 2H NMR studies of phase equilibria in the three component system: monoolein-dioleoylphosphatidylcholine. In: Mittal KL, Lindman B (eds) Surfactants in Solution, vol 1. Plenum, New York, pp 143–152CrossRefGoogle Scholar
  156. Hambling SG, McAlpine AS, Sawyer L (1992) β-Lactoglobulin. In: Fox P (ed) Advanced dairy chemistry. Proteins, vol 1. Elsevier Applied Science Publishers Ltd., London, pp 141–190Google Scholar
  157. Hanssens I, Van Cauwelaert FH (1978) Shielding of phospholipid monolayers from phospholipase c hydrolysis by α-lactalbumin adsorption. Biochem Biophys Res Commun 84(4):1088–1096PubMedCrossRefPubMedCentralGoogle Scholar
  158. Hansted JG, Wejse PL, Bertelsen H, Otzen DE (2011) Effect of protein–surfactant interactions on aggregation of β-lactoglobulin. Biochim Biophys Acta 1814:713–723PubMedCrossRefPubMedCentralGoogle Scholar
  159. Haynes CA, Norde W (1994) Globular proteins at solid/liquid interfaces. Colloids Surf B Biointerfaces 2:517–566CrossRefGoogle Scholar
  160. Heckl WM, Zaba BN, Möhwald H (1987) Interactions of cytochrome b5and c with phospholipid monolayers. Biochim Biophys Acta 903:166–176PubMedCrossRefPubMedCentralGoogle Scholar
  161. Heertje I, Nederlof J, Hendrickx HACM, Lucassen-Reynders EH (1990) The observation of the displacement of emulsifiers by confocal scanning laser microscopy. Food Struct 9:305–316Google Scholar
  162. Hegg P-O (1980) Thermal stability of β-lactoglobulin as a function of pH and the relativ concentration of sodium dodecylsulphate. Acta Agric Scand 30:401–404CrossRefGoogle Scholar
  163. Heimburg T, Hildebrandt P, Marsh D (1991) Cytochrome c-lipid interactions studied by resonance raman and 31P NMR spectroscopy. Correlation between the conformational changes of the protein and the lipid bilayer. Biochemistry 30:9084–9089PubMedCrossRefPubMedCentralGoogle Scholar
  164. Helfrich W (1989) Hats and Saddles in lipid membranes. Liquid Cryst 5:1647–1658CrossRefGoogle Scholar
  165. Hill AV (1910) A New mathematical treatment of changes in in ionic concentration in muscle and nerve under action of electron currents with a theory as to their mode of excitation. J Physiol 40:90–224Google Scholar
  166. Hønger T, Jørgensen K, Biltonen RL, Mouritsen OG (1996) Systematic relationship between phospholipase A2 activity and dynamic lipid bilayer microheterogeneity. Biochemistry 35:9003–9006PubMedCrossRefGoogle Scholar
  167. Horbett TA (1984) Mass action effects on competitive adsorption of fibrinogen from hemoglobin solutions and from plasma. Thromb Haemost 51:174–181PubMedCrossRefGoogle Scholar
  168. Husband FA, Wilde PJ, Marion D, Clark DC (1995) A comparison of the foaming and interfacial properties of two related lipid binding proteins from wheat in the presence of a competing surfactant. In: Dickinson E, Lorient D (eds) Food macromolecules and colloids, vol 156. Royal Society of Chemistry, London, pp 283–296Google Scholar
  169. Hyde ST, Andersson S, Ericsson B, Larsson K (1984) A cubic structure consisting of a lipid bilayer forming an infinite periodic minimal surface of the gyroid type in the glycerolmonooleat-water system. Z Kristallogr 168:213–219CrossRefGoogle Scholar
  170. Hyde S, Blum Z, Landh T, Lidin S, Ninham BW, Andersson S, Larsson K (1997) The language of shape. The role of curvature in condensed matter: physics, chemistry and biology. Elsevier, AmsterdamGoogle Scholar
  171. Ibdah JA, Phillips MC (1988) Effects of lipid composition and packing on the adsorption of apolipoprotein A–I to lipid monolayers. Biochemistry 27:7155–7162PubMedCrossRefPubMedCentralGoogle Scholar
  172. Israelachvili JN, Adams GE (1978) Measurements of forces between two mica surfaces in aqueous electrolyte solutions in the range 0–100 nm. J Chem Soc Faraday Trans 1(74):975–1001CrossRefGoogle Scholar
  173. Israelachvili JN, Mitchell DJ, Ninham BW (1976) Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J Chem Soc Faraday Trans II 72:1525–1568CrossRefGoogle Scholar
  174. Jachimska B, Pajor A (2012) Physico-chemical characterization of bovine serum albumin in solution and as deposited on surfaces. Bioelectrochemistry 87:138–146.  https://doi.org/10.1016/J.Bioelechem.2011.09.004CrossRefPubMedPubMedCentralGoogle Scholar
  175. Jirgensons B (1976) Conformational transitions of non-helical proteins effected by dodecylsulfate – circular dichroism of alpha1-acid glycoprotein, Bence-Jones protein, carbonic anhydrase-B, deoxyribonuclease, pepsinogen, and plasminogen. Biochim Biophys Acta 434:58–68PubMedCrossRefPubMedCentralGoogle Scholar
  176. Johnsson M, Barauskas J, Norlin A, Tiberg F (2006) Physicochemical and drug delivery aspects of lipid-based liquid crystalline nanoparticles: a case study of intravenously administered propofol. J Nanosci Nanotechnol 6(9–10):3017–3024PubMedCrossRefPubMedCentralGoogle Scholar
  177. Jones MN, Brass A (1991) Interaction between small amphiphatic molecules and proteins. In: Dickinson E (ed) Food, polymers, gels, and colloids, vol 82. Royal Society of Chemistry, Cambridge, pp 65–80CrossRefGoogle Scholar
  178. Jones MN, Manley P (1979) Binding of n-alkyl sulphates to lysozyme in Aqueous solution. J Chem Soc Faraday Trans 75:1736–1744CrossRefGoogle Scholar
  179. Jones MN, Manley P (1980) Interaction between lysozyme and n-alkyl sulphates in aqueous solution. J Chem Soc Faraday Trans 1(76):654–664CrossRefGoogle Scholar
  180. Jones MN, Manley P, Holt A (1984) Cooperativity and effects of ionic strength on the binding of sodium n-dodecyl sulphate to lysozyme. Int J Biol Macromol 6:65–68CrossRefGoogle Scholar
  181. Jones MN, Manley P, Midgley PJW, Wilkinson AE (1982) Dissociation of bovine and bacterial catalases by sodium n-dodecyl sulfate. Biopolymers 21:1435–1450PubMedCrossRefPubMedCentralGoogle Scholar
  182. Kaneshina S, Tanaka M, Kondo T, Mizuno T, Aoki K (1973) Interaction of bovine serum albumin with detergent cations. Bull Chem Soc Jpn 46:2735–2738CrossRefGoogle Scholar
  183. Kapp SJ, Larsson I, Van De Weert M, Cardenas M, Jorgensen L (2015) Competitive adsorption of monoclonal antibodies and nonionic surfactants at solid hydrophobic surfaces. J Pharm Sci 104(2):593–601.  https://doi.org/10.1002/Jps.24265CrossRefPubMedPubMedCentralGoogle Scholar
  184. Kauzmann W (1959) Some factors in the interpretation of protein denaturation. Adv Protein Chem 14:1–63PubMedCrossRefPubMedCentralGoogle Scholar
  185. Kayitmazer AB, Seeman D, Minsky BB, Dubin PL, Xu YS (2013) Protein-polyelectrolyte interactions. Soft Matter 9(9):2553–2583.  https://doi.org/10.1039/C2sm27002aCrossRefGoogle Scholar
  186. Kim J, Kim H (1986) Fusion of phospholipid vesicles induced by α-lactalbumin at acid pH. Biochemistry 25:7867–7874PubMedCrossRefPubMedCentralGoogle Scholar
  187. Kinnunen PKJ (1996) On the molecular-level mechanisms of peripheral protein-membrane interactions induced by lipids forming inverted non-lamellar phases. Chem Phys Lipids 81:151–166CrossRefGoogle Scholar
  188. Kinnunen PKJ, Halopainen JM (2000) Mechnisms of initiation of membrane fusion: role of lipids. Biosci Rep 20:465–482PubMedCrossRefPubMedCentralGoogle Scholar
  189. Knowles TPJ, Vendruscolo M, Dobson CM (2014) The amyloid state and its association with protein misfolding diseases. Nat Rev Mol Cell Biol 15:384–396PubMedCrossRefPubMedCentralGoogle Scholar
  190. Komura S (1996) Shape fluctuations of vesicles. In: Rosoff M (ed) Vesicles. Marcel Dekker, New York, pp 198–236Google Scholar
  191. Krägel J, Wüstneck R, Clark D, Wilde P, Miller R (1995) Dynamic surface tension and surface shear rheology studies of mixed β-lactoglobulin/Tween 20 systems. Colloids Surf A Physicochem Eng Aspects 98:127–135CrossRefGoogle Scholar
  192. Kristensen A, Nylander T, Paulsson M, Carlsson A (1997) Interaction between β-lactoglobulin and phospholipids in solution. Int Dairy J 7:82–92CrossRefGoogle Scholar
  193. Kristensen D, Nylander T, Rasmussen JT, Paulsson M, Carlsson A (1996) Bovine milk sphingomyelin at the air/water interface and its interaction with wanthine oxidase. Langmuir 12:5856–5862CrossRefGoogle Scholar
  194. Kurihara K, Katsuragi Y (1993) Specific inhibitor for bitter taste. Nature 365:213–214PubMedPubMedCentralGoogle Scholar
  195. Kuwajima K (1989) The molten globule state as aclue for understanding the folding and cooperativity of globular-protein structure. Proteins Struct Funct Genet 6:87–103PubMedCrossRefPubMedCentralGoogle Scholar
  196. Landau EM, Luisi PL (1993) Lipidic cubic phases as transparent, rigid matrices for the direct spectroscopic study of immobilized membrane proteins. J Am Chem Soc 115:2102–2106CrossRefGoogle Scholar
  197. Landau EM, Rosenbusch JP (1996) Lipidic cubic phases: a novel concept for the crystallization of membrane proteins. Proc Natl Acad Sci 93:14532–14535PubMedCrossRefPubMedCentralGoogle Scholar
  198. Landh T (1994) Phase behavior in the system pine needle oil monoglycerides-poloxamer 407 – water 20 °C. J Phys Chem 98:8453–8467CrossRefGoogle Scholar
  199. Landh T (1995) From entangled membranes to eclectic morphologies: cubic membranes as subcellular space organisers. FEBS Lett 369:13–17PubMedCrossRefPubMedCentralGoogle Scholar
  200. Lapanje S (1978) Physicochemical aspects of protein denaturation. Wiley, New YorkGoogle Scholar
  201. Larsson K (1983) Two cubic phases in monoolein-water system. Nature 304:664CrossRefGoogle Scholar
  202. Larsson K (1989) Cubic lipid-water phases: structure and biomembrane aspects. J Phys Chem 93:7304–7314CrossRefGoogle Scholar
  203. Larsson K (1994) Lipids – molecular organization, physical functions and technical applications. The Oily Press Ltd., DundeeGoogle Scholar
  204. Larsson K (2000) Aqueous dispersions of cubic lipid-water phases. Curr Opin Colloid Interface Sci 5:64–69CrossRefGoogle Scholar
  205. Larsson M, Larsson K, Wollmer P (2002) The alveolar surface is lined by a coherent liquid-crystalline phase. Progr Colloid Polym Sci 120:28–34CrossRefGoogle Scholar
  206. Larsson K, Lindblom G (1982) Molecular amphiphile bilayers forming a cubic phase in amphiphile-water systems. J Disp Sci Technol 3(1):61–66CrossRefGoogle Scholar
  207. Lasic DD (1993) Liposomes – from physics to applications. Elsevier, AmsterdamGoogle Scholar
  208. Lasic DD, Joannic R, Keller BC, Frederik PM, Auvray L (2001) Spontaneous vesiculation. Adv Colloid Interf Sci 89–90:337–349CrossRefGoogle Scholar
  209. Leaver J, Dagleish DG (1992) Variations in the binding of β-casein to oil-water interfaces detected by trypsin-catalysed hydrolysis. J Colloid Interface Sci 149(1):49–55CrossRefGoogle Scholar
  210. Lendermann J, Winter R (2003) Interaction of cytochrome c with cubic monoolein mesophases at limited hydration conditions: the effects of concentration, temperature and pressure. Phys Chem Chem Phys 5:1440–1450CrossRefGoogle Scholar
  211. LeNeveu DM, Rand RP, Parsegian VA (1977) Measurement and modification of forces between lecithin bilayers. Biophys J 18:209–230PubMedPubMedCentralCrossRefGoogle Scholar
  212. Léonil J, Henry G, Jouanneau D, Delage MM, Forge V, Putaux J-L (2008) Kinetics of fibril formation of bovine κ-casein indicate a conformational rearrangement as a critical step in the process. J Mol Biol 381:1267–1280PubMedCrossRefGoogle Scholar
  213. Leslie SB, Puvvada S, Ratna BR, Rudolph AS (1996) Encapsulation of hemoglobin in a bicontinuous cubic phase lipid. Biochim Biophys Acta 1285:246–254CrossRefGoogle Scholar
  214. Lindahl L, Vogel HJ (1984) Metal-ion-dependent hydrophobic interaction chromatography of α-lactalbumins. Anal Biochem 140:394PubMedCrossRefGoogle Scholar
  215. Lindblom G, Larsson K, Johansson L, Fontell K, Forsén S (1979) The cubic phase of monoglyceride-water systems. Arguments for a structure based upon lamellar bilayer units. J Am Chem Soc 101:5465–5470CrossRefGoogle Scholar
  216. Lindblom G, Rilfors L (1989) Cubic phases and isotropic structures formed by membrane lipids – possible biological relevance. Biochim Biophys Acta 988:221–256CrossRefGoogle Scholar
  217. Lindman B, Wennerström H (1980) Micelles. Amphiphile aggregation in aqueous solution. Topics Current Chem 87:1–83CrossRefGoogle Scholar
  218. Lindström M, Ljusberg-Wahren H, Larsson K, Borgström B (1981) Aqueous lipid phases of relevance to intestinal fat digestion and absorption. Lipids 16:749–754PubMedCrossRefGoogle Scholar
  219. Lu JR, Su TJ, Thomas RK (1998) Binding of surfactants onto preadsorbed layers of bovine serum albumin at the silica-water interface. J Phys Chem B 102:10307–10315CrossRefGoogle Scholar
  220. Lucassen-Reynders EH, Lucassen J, Giles D (1981) Surface and bulk properties of mixed anionic/cationic surfactant systems. I. Equilibrium surface tensions. J Colloid Interface Sci 81(1):150–157CrossRefGoogle Scholar
  221. Lunkenheimer K, Czichocki G (1993) On the stability of aqueous sodium dodecyl sulfate solutions. J Colloid Interface Sci 160:509–510CrossRefGoogle Scholar
  222. Lunkenheimer K, Miller R (1987) A criterion for judging purity of adsorbed surfactant layers. J Colloid Interface Sci 120:176–183CrossRefGoogle Scholar
  223. Luzzati V (1968) X-ray diffraction studies of lipid-water systems. In: Chapman D (ed) Biological membranes. Academic, New York, pp 77–123Google Scholar
  224. Luzzati V (1997) Biological significans of lipid polymorphism: the cubic phases. Curr Opin Struct Biol 7:661–668PubMedCrossRefGoogle Scholar
  225. Luzzati V, Tardieu A, Gulik-Krzywicki T, Rivas E, Reiss-Husson F (1968) Structure of the cubic phases of lipid-water systems. Nature 220(2):485–488PubMedCrossRefGoogle Scholar
  226. Luzzati V, Vargas R, Gulik A, Mariani P, Seddon JM, Rivas E (1992) Lipid polymorphism: a correction. The structure of the cubic phase of extinction symbol Fd-- consists of two types of disjointed reverse micelles embedded in a three-dimensional matrix. Biochemistry 31:279–285PubMedCrossRefGoogle Scholar
  227. Mackie AR, Gunning AP, Ridout MJ, Wilde PJ, Morris VJ (2001b) Orogenic displacement in mixed β-lactoglobulin/β-casein films at the air/water interface. Langmuir 17:6593–6598CrossRefGoogle Scholar
  228. Mackie AR, Gunning AP, Ridout MJ, Wilde PJ, Rodriguez Patino J (2001a) In situ measurements of the displacement of protein films from the air/water interface by surfactant. Biomacromolecules 2:1001–1006PubMedCrossRefGoogle Scholar
  229. Mackie AR, Gunning AP, Wilde PJ, Morris VJ (1999) Orogenic displacement of protein from the air/water interface by competitive adsorption. J Colloid Interface Sci 210:157–166PubMedCrossRefGoogle Scholar
  230. Mackie AR, Wilde PJ (2005) The role of interactions in defining the structure of mixed protein–surfactant interfaces. Adv Colloid Interf Sci 117(1–3):3–13CrossRefGoogle Scholar
  231. MacRitchie F (1990) Chemistry at interfaces. Academic, San DiegoGoogle Scholar
  232. Makino S (1979) Interactions of proteins with amphiphatic substances. Adv Biophys 12:131–184PubMedGoogle Scholar
  233. Makino S, Reynolds JA, Tanford C (1973) The binding of deoxycholate and Triton X-100 to proteins. J Biol Chem 248(14):4926–4932PubMedGoogle Scholar
  234. Malmsten M (1995) Protein adsorption at phospholipid surfaces. J Colloid Interface Sci 172:106–115CrossRefGoogle Scholar
  235. Malmsten M, Claesson P, Siegel G (1994) Forces between proteoheparan sulfate layers adsorbed at hydrophobic surfaces. Langmuir 10:1274–1280CrossRefGoogle Scholar
  236. Malmsten M, Lindman B (1989) Ellipsometry studies of cleaning of hard surfaces – relation to the spontaneous curvature of the surfactant monolayer. Langmuir 5(4):1105–1111CrossRefGoogle Scholar
  237. Manne S, Cleveland JP, Gaub HE, Stucky GD, Hansma PK (1994) Direct visualization of surfactant hemimicelles by force microscopy of the electrical double-layer. Langmuir 10(12):4409–4413CrossRefGoogle Scholar
  238. Mariani P, Luzzati V, Delacroix H (1988) Cubic phases of lipid-containing systems. Structure analysis and biological applications. J Mol Biol 204:165–189PubMedCrossRefGoogle Scholar
  239. Mariani P, Rivas E, Luzzati V, Delacroix H (1990) Polymorphism of a lipid extract from Pseudomonas fluorescence: structural analysis of a hexagonal phase and of a novel cubic phase of extinction symbol Fd(--). Biochemistry 29:6799–6810PubMedCrossRefGoogle Scholar
  240. Maste MCL, Norde W, Visser AJWG (1997) Adsorption-induced conformational changes in the serine proteinase savinase: a tryptophan fluorescence and circular dichroism study. J Colloid Interface Sci 196:224–230PubMedCrossRefGoogle Scholar
  241. Mather IH (2000) A review and proposed nomenclature for major proteins of the milk-fat globule membrane. J Dairy Sci 83:203–247PubMedCrossRefGoogle Scholar
  242. Matsumiya K, Takahashi Y, Nakanishi K, Dotsu N, Matsumura Y (2014) Diglycerol esters of fatty acids promote severe coalescence between protein-stabilized oil droplets by emulsifiereprotein competitive interactions. Food Hydrocolloid 42:397–402CrossRefGoogle Scholar
  243. Matsumura M, Becktel WJ, Matthews BW (1988) Hydrophobic stabilization of T4 Lysozyme determined directly by multiple substitution of Ile 3. Nature 334:406–410PubMedCrossRefGoogle Scholar
  244. Mattice WL, Riser JM, Clark DS (1976) Conformational properties of the complexes formed by proteins and sodium dodecyl sulfate. Biochemistry 15:4264–4272PubMedCrossRefGoogle Scholar
  245. Mattisson C, Nylander T, Axelsson A, Zacchi G (1996) Diffusivity measurements by holographic laser interferometry in a cubic lipid-water phase. Chem Phys Lipids 84(1):1–12CrossRefGoogle Scholar
  246. McCallum CD, Epand RM (1995) Insulin receptor autophosphorylation and signaling is altered by modulation of membrane physical properties. Biochemistry 34(6):1815–1824PubMedCrossRefGoogle Scholar
  247. McGuire J, Wahlgren M, Arnebrant T (1995a) The influence of net charge and charge location on the adsorption and dodecyltrimethylammonium bromide-mediated elutability of bacteriophage T4 lysozyme at silica surfaces. J Colloid Interface Sci 170:193–202CrossRefGoogle Scholar
  248. McGuire J, Wahlgren MC, Arnebrant T (1995b) Structural stability effects on the adsorption and dodecyltrimethylammonium bromide-mediated elutability of bacteriophage T4 lysozyme at silica surfaces. J Colloid Interface Sci 170:182–192CrossRefGoogle Scholar
  249. Miller R, Fainerman VB, Makievski AV, Krägel J, Grigoriev DO, Kazakov VN, Sinyachenko OV (2000a) Dynamics of protein and mixed protein/surfactant adsorption layers at hte water/fluid interface. Adv Colloid Interf Sci 86:39–82CrossRefGoogle Scholar
  250. Miller R, Fainerman VB, Makievski AV, Krägel J, Wüstneck R (2000b) Adsorption characteristics of mixed monolayers of a globular protein and a non-ionic surfactant. Colloids Surf A Physicochem Eng Aspects 161:151–157CrossRefGoogle Scholar
  251. Miller R, Lunkenheimer K (1986) A criterion for judging the purity of surfactant solutions based on diffusion controlled adsorption kinetics. Colloid Polym Sci 264:273–276CrossRefGoogle Scholar
  252. Minami H, Nylander T, Carlsson A (1996) Incorporation of proteins in the lipid-water gel state. Chem Phys Lipids 79:65–70PubMedCrossRefGoogle Scholar
  253. Miocinovic J, Le TT, Fredrick E, Van der Meeren P, Pudja P, Dewettinck K (2013) A comparison of composition and emulsifying properties of MFGM materials prepared from different dairy sources by microfiltration. Food Sci Technol Int 20:441–451PubMedCrossRefPubMedCentralGoogle Scholar
  254. Mitchell DJ, Ninham BW (1981) Micelles, vesicles and microemulsions. J Chem Soc Faraday Trans 2(77):601–629CrossRefGoogle Scholar
  255. Mitchell DJ, Tiddy GJT, Waring L, Bostock T, McDonald MP (1983) Phase-behavior of polyoxyethylene surfactants with water-mesophase structures and partial miscibility (cloud points). J Chem Soc Faraday Trans I 79:975–1000CrossRefGoogle Scholar
  256. Monduzzi M, Lampis S, Murgia S, Salis A (2014) From self-assembly fundamental knowledge to nanomedicine developments. Adv Colloid Interface Sci 205:48–67.  https://doi.org/10.1016/J.Cis.2013.10.009CrossRefPubMedGoogle Scholar
  257. Morén AK, Khan A (1995) The phase equilibria of an anionic surfactant – sodium dodecyl sulphate and an oppositely charged protein lysozyme in water. Langmuir 11:3636–3643CrossRefGoogle Scholar
  258. Morén AK, Khan A (1998) Surfactant hydrophobic effect on the phase behavior of oppositely charged protein and surfactant mixtures: lysozyme and sodium alkyl sulfates. Langmuir 14:6818–6826CrossRefGoogle Scholar
  259. Negrini R, Sanchez-Ferrer A, Mezzenga R (2014) Influence of electrostatic interactions on the release, of charged molecules from lipid cubic phases. Langmuir 30(15):4280–4288.  https://doi.org/10.1021/La5008439CrossRefPubMedPubMedCentralGoogle Scholar
  260. Nelson CA (1971) The binding of detergents to proteins. 1. The maximum amount of dodecylsulfate bound to proteins and the resistance to binding of several proteins. J Biol Chem 246(12):3895–3901PubMedPubMedCentralGoogle Scholar
  261. Nguyen TH, Hanley T, Porter CJH, Boyd BJ (2011) Nanostructured liquid crystalline particles provide long duration sustained-release effect for a poorly water soluble drug after oral administration. J Control Release 153(2):180–186.  https://doi.org/10.1016/J.Jconrel.2011.03.033CrossRefPubMedGoogle Scholar
  262. Nielsen SB, Wilhelm K, Vad B, Schleucher J, Morozova-Roche LA, Otzen D (2010) The interaction of equine lysozyme:oleic acid complexes with lipid membranes suggests a cargo off-loading mechanism. J Mol Biol 398:351–361PubMedCrossRefGoogle Scholar
  263. Ninham BW (2002) Physical chemistry: the loss of certainty. Progr Colloid Polym Sci 120:1–12CrossRefGoogle Scholar
  264. Nishikido N, Takahara T, Kobayashi H, Tanaka M (1982) Interaction between hydrophilic proteins and nonionic detergents studied by surface tension measurements. Bull Chem Soc Jpn 55:3085–3088CrossRefGoogle Scholar
  265. Norde W (1986) Adsorption of proteins from solution at the solid-liquid interface. Adv Colloid Interf Sci 25:267–340CrossRefGoogle Scholar
  266. Norde W (2000) Proteins at solid surfaces. In: Baszkin A, Norde W (eds) Physical chemistry of biological interfaces. Marcel Dekker, Inc., New York, pp 115–135Google Scholar
  267. Nozaki Y, Reynolds JA, Tanford C (1974) The interaction of a cationic detergent with serum albumin and other proteins. J Biol Chem 249:4452–4459PubMedPubMedCentralGoogle Scholar
  268. Nylander T, Mattisson C, Razumas V, Miezes Y, Håkansson B (1996) A study of entrapped enzyme stability and substrate diffusion in a monoglyceride-based cubic liquid crystalline phase. Colloids Surf A Physicochem Eng Aspects 114:311–320CrossRefGoogle Scholar
  269. Ohgushi M, Wada A (1983) ‘Molten-globule state’: a compact form of globular proteins with mobile side-chains. FEBS Lett 164(1):21–24PubMedCrossRefPubMedCentralGoogle Scholar
  270. Ossowski S, Jackson A, Obiols-Rabasa M, Holt C, Lenton S, Porcar L, Paulsson M, Nylander T (2012) Aggregation behavior of bovine κ- and β-casein studied with small angle neutron scattering, light scattering, and cryogenic transmission electron microscopy. Langmuir 28:13577–13589PubMedCrossRefPubMedCentralGoogle Scholar
  271. Pace CN, Fisher LM, Cupo JF (1981) Globular protein stability: aspects of interest in protein turnover. Acta Biol Med Germ 40:1385–1392PubMedPubMedCentralGoogle Scholar
  272. Panaiotov I, Verger R (2000) Enzymatic reactions at interfaces: interfacial and temporal organization of enzymatic lipolysis. In: Baszkin A, Norde W (eds) Physical chemistry of biological interfaces. Marcel Dekker, Inc., New York, pp 359–400Google Scholar
  273. Papiz MJ, Sawyer L, Eliopoulos EE, North ACT, Findlay BC, Sivaprasadarao R, Jones TA, Newcomer ME, Kraulis PJ (1986) The structure of β-lactoglobulin and its similarity to plasma retinol-binding protein. Nature 324:383–385PubMedCrossRefPubMedCentralGoogle Scholar
  274. Patton JS, Carey MC (1979) Watching fat digestion. The formation of visible product phases by pancreatic lipase is described. Science 204:145–148PubMedCrossRefPubMedCentralGoogle Scholar
  275. Patton JS, Vetter RD, Hamosh M, Borgström B, Lindström M, Carey MC (1985) The light microscopy of fat digestion. Food Microstruct 4:29–41Google Scholar
  276. Piéroni G, Gargouri Y, Sarda L, Verger R (1990) Interactions of lipases with lipid monolayers. Facts and questions. Adv Colloid Interf Sci 32:341–378CrossRefGoogle Scholar
  277. Pomorski TG, Nylander T, Cárdenas M (2014) Model cell membranes: discerning lipid and protein contributions in shaping the cell. Adv Colloid Interf Sci 205:207–220CrossRefGoogle Scholar
  278. Ponnuswamy PK (1993) Hydrophobic characteristics of folded proteins. Prog Biophys Mol Biol 59:57–103PubMedCrossRefPubMedCentralGoogle Scholar
  279. Portmann M, Landau EM, Luisi PL (1991) Spectroscopic and rheological studies of enzymes in rigid lipidic matrices: the case of α-chymotrypsin in a lysolecithin/water cubic phase. J Phys Chem 95:8437–8440CrossRefGoogle Scholar
  280. Price ME, Cornelius RM, Brash JL (2001) Protein adsorption to polyethylene glycol modified liposomes from fibrinogen solution and from plasma. Biochim Biophys Acta 1512:191–205PubMedCrossRefPubMedCentralGoogle Scholar
  281. Prins A (1999) Stagnant surface behaviour and its effect on foam and film stability. Colloids Surf A Physicochem Eng Aspects 149(1–3):467–473CrossRefGoogle Scholar
  282. Prins A, Bergink-Martens DJM (1992) Dynamic surface properties in relation to dispersion stability. In: Dickinson E, Walstra P (eds) Food colloids and polymers: stability and mechanical properties. The Royal Society of Chemistry, Cambridge, pp 291–300Google Scholar
  283. Privalov PL (1979) Stability of proteins – small globular proteins. Adv Protein Chem 33:167–241PubMedCrossRefPubMedCentralGoogle Scholar
  284. Privalov PL (1982) Stability of proteins. Proteins which do not present a single cooperative system. Adv Protein Chem 35:1–104PubMedCrossRefPubMedCentralGoogle Scholar
  285. Privalov PL, Gill SJ (1988) Stability of protein structure and hydrophobic interaction. Adv Protein Chem 39:191–234PubMedCrossRefGoogle Scholar
  286. Ptitsyn OB, Pain RH, Semisotnov GV, Zerovnik E, Razgulyaev OI (1990) Evidence for a molten globule state as a general intermediate in protein folding. FEBS Lett 262(1):20–24PubMedCrossRefGoogle Scholar
  287. Pugnaloni LA, Dickinson E, Ettelaie R, Mackie AR, Wilde PJ (2004) Competitive adsorption of proteins and low-molecular-weight surfactants: computer simulation and microscopic imaging. Adv Colloid Interf Sci 107(1):27–49CrossRefGoogle Scholar
  288. Puyol P, Perez MD, Peiro JM, Calvo M (1994) Effect of binding of retinol and palmitic acid to bovine β-lactoglobulin on its resistance to thermal denaturation. J Dairy Sci 77:1494–1502CrossRefGoogle Scholar
  289. Qui H, Caffrey M (2000) The phase diagram of the monoolein/water system: metastability and equilibrium aspects. Biomaterials 21:223–234CrossRefGoogle Scholar
  290. Quinn PJ, Dawson RMC (1969a) The interaction of cytochrome c with monolayers of phosphatidylethanolamine. Biochem J 113:791–803PubMedPubMedCentralGoogle Scholar
  291. Quinn PJ, Dawson RMC (1969b) Interactions of cytochrome c and [14C]carboxymethylated cytochrome c with monolayers of phosphatidylcholine, phosphatidic acid and cardiolipin. Biochem J 115:65–75PubMedPubMedCentralGoogle Scholar
  292. Rand RP (1971) Structural studies by X-ray diffraction of model lipid protein membranes of serum albumin-lecithin-cardiolipid. Biochim Biophys Acta 241:823–834PubMedCrossRefGoogle Scholar
  293. Rapoza RJ, Horbett TA (1990a) The effects of concentration and adsorption time on the elutability of adsorbed proteins in surfactant solutions of varying structures and concentrations. J Colloid Interface Sci 136(2):480–493CrossRefGoogle Scholar
  294. Rapoza RJ, Horbett TA (1990b) Postadsorptive transitions in fibrinogen – influence of polymer properties. J Biomed Mater Res 24(10):1263–1287PubMedCrossRefGoogle Scholar
  295. Raudino A (1995) Lateral inhomogeneous membranes: theoretical aspects. Adv Colloid Interf Sci 57:229–285CrossRefGoogle Scholar
  296. Raudino A, Castelli F (1992) A thermodynamic study of protein-induced lipid lateral phase separation. Effect of lysozyme on mixed lipid vesicles. Colloid Polym Sci 270(11):1116–1123CrossRefGoogle Scholar
  297. Rayner M (2015) Current status on novel ways for stabilizing food dispersions by oleosins, particles and microgels. Curr Opin Food Sci 3:94–109CrossRefGoogle Scholar
  298. Razumas V, Kanapieniené J, Nylander T, Engström S, Larsson K (1994) Electrochemical biosensors for glucose, lactate, urea, and creatinine based on enzymes entrapped in a cubic liquid crystalline phase. Anal Chim Acta 289:155–162CrossRefGoogle Scholar
  299. Razumas V, Larsson K, Miezes Y, Nylander T (1996b) A cubic monoolein-cytochrome c-water phase: X-ray diffraction, FT-IR, differential scanning calorimetry and electrochemical studies. J Phys Chem 100:11766–11774CrossRefGoogle Scholar
  300. Razumas V, Talaikyté Z, Barauskas J, Larsson K, Miezis Y, Nylander T (1996a) Effects of distearoylphosphatidylglycerol and lysozyme on the structure of the monoolein-water cubic phase: X-ray diffraction and Raman scattering studies. Chem Phys Lipids 84:123–138PubMedCrossRefPubMedCentralGoogle Scholar
  301. Reis P, Holmberg K, Watzke H, Leser ME, Miller R (2009) Lipases at interfaces: a review. Adv Colloid Interf Sci 147–148:237–250.  https://doi.org/10.1016/j.cis.2008.06.001CrossRefGoogle Scholar
  302. Rendall HM (1976) Use of surfactant selective electrode in the measurement of the binding of anionic surfactants to bovine serum albumin. J Chem Soc Faraday Trans 1(72):481–484CrossRefGoogle Scholar
  303. Reynolds JA, Gallagher JP, Steinhardt J (1970) Effect of pH on the binding of n-alkyl sulfates to bovine serum albumin. Biochemistry 9:1232–1238PubMedCrossRefPubMedCentralGoogle Scholar
  304. Reynolds J, Herbert S, Steinhardt J (1968) The binding of some long-chain fatty acid anions and alcohols by bovine serum albumin. Biochemistry 7:1357–1361PubMedCrossRefPubMedCentralGoogle Scholar
  305. Reynolds JA, Tanford C (1970) Binding of dodecyl sulfate to proteins at high binding ratios. Possible implications for the state of proteins in biological membranes. Proc Natl Acad Sci 66:1002–1007PubMedCrossRefPubMedCentralGoogle Scholar
  306. Richards FM (1977) Areas, volumes, packing, and protein structure. Ann Rev Biophys Bioeng 6:151–176CrossRefGoogle Scholar
  307. Ruggeri F, Zhang F, Lind T, Bruce ED, Lau BLT, Cardenas M (2013) Non-specific interactions between soluble proteins and lipids induce irreversible changes in the properties of lipid bilayers. Soft Matter 9(16):4219–4226.  https://doi.org/10.1039/C3sm27769kCrossRefPubMedPubMedCentralGoogle Scholar
  308. Rytömaa M, Mustonen P, Kinnunen PKJ (1992) Reversible, nonionic, and pH-dependent association of cytochrome c with cardiolipin-phosphatidylcholine liposomes. J Biol Chem 267:22243–22248PubMedPubMedCentralGoogle Scholar
  309. Sagalowicz L, Leser ME, Watzke HJ, Michel M (2006a) Monoglyceride self-assembly structures as delivery vehicles. Trends Food Sci Technol 17(5):204–214CrossRefGoogle Scholar
  310. Sagalowicz L, Mezzenga R, Leser ME (2006b) Investigating reversed liquid crystalline mesophases. Curr Opin Colloid Interface Sci 11(4):224–229CrossRefGoogle Scholar
  311. Salentinig SJ, Phan S, Khan J, Hawley A, Boyd BJ (2013) Formation of highly organized nanostructures during the digestion of milk. ACS Nano 7:10904–10911PubMedCrossRefGoogle Scholar
  312. Salentinig S, Sagalowicz L, Glatter O (2010) Self-assembled structures and pKa value of oleic acid in systems of biological relevance. Langmuir 26:11670–11679PubMedCrossRefGoogle Scholar
  313. Salentinig S, Sagalowicz L, Leser ME, Tedeschi C, Glatter O (2011) Transitions in the internal structure of lipid droplets during fat digestion. Soft Matter 7:650–661CrossRefGoogle Scholar
  314. Salvati Manni L, Zabara A, Osornio YM, Schöppe J, Batyuk A, Plckthun A, Siegel JS, Mezzenga R, Landau EM (2015) Phase behavior of a designed cyclopropyl analogue of monoolein: implications for low-temperature membrane protein crystallization. Angew Chem Int Ed 54:1027–1031CrossRefGoogle Scholar
  315. Santos SF, Zanette D, Fischer H, Itri R (2003) A systematic study of bovine serum albumin (BSA) and sodium dodecyl sulfate (SDS) interactions by surface tension and small angle X-ray scattering. J Colloid Interface Sci 262:400–408PubMedCrossRefGoogle Scholar
  316. Sarker DK, Wilde PJ, Clark DC (1995) Competitive adsorption of L-α-lysophosphatidylcholine/β-lactoglobulin mixtures at the interfaces of foams and foam lamellae. Colloids Surf B Biointerfaces 3:349–356CrossRefGoogle Scholar
  317. Scamehorn JF, Schechter RS, Wade WH (1982) Adsorption of surfactants on mineral oxide surfaces from aqueous solutions. 1. Isomerically pure anionic surfactants. J Colloid Interface Sci 85:463–478CrossRefGoogle Scholar
  318. Scatchard G (1949) The attractions of proteins for small moelcules and ions. Ann N Y Acad Sci 51:660CrossRefGoogle Scholar
  319. Schmid RD, Verger R (1998) Lipases: interfacial enzymes with attractive applications. Angew Chem Int Ed 37:1608–1633CrossRefGoogle Scholar
  320. Schönhoff M, Lösche M, Meyer M, Wilhelm C (1992) Incorporation of membrane proteins into lipid surface monolayers: characterisation by fluorescence and electron microscopies. Progr Colloid Polym Sci 89:243–248CrossRefGoogle Scholar
  321. Seddon JM (1990) Structure of the hexagonal (HII) phase, and non-lamellar phase transitions of lipids. Biochim Biophys Acta 1031:1–69PubMedCrossRefGoogle Scholar
  322. Seddon JM, Bartle EA, Mingins J (1990) Inverse cubic liquid crystalline phases of phospholipids and related lyotropic system. J Phys Condens Matter 2:SA285–SA290CrossRefGoogle Scholar
  323. Seifert U, Berndl K, Lipowsky R (1991) Shape transformations of vesicles: phase diagram for spontaneous-curvature and bilayr-coupling models. Phys Rev A 44:1182–1202PubMedCrossRefGoogle Scholar
  324. Simidjiev I, Stoylova S, Amenitsch H, Jávorfi T, Mustárdy L, Laggner P, Holzenburg A, Garab G (2000) Self-assembly of large, ordered lamellae from non-bilayer lipids and integral membrane proteins in vitro. Proc Natl Acad Sci U S A 97:1473–1476PubMedPubMedCentralCrossRefGoogle Scholar
  325. Siminovitch DJ, Jeffrey KR (1981) Orientational order in the choline headgroup of sphingomyelin: A 14N-NMR study. Biochim Biophys Acta 645:270–278PubMedCrossRefGoogle Scholar
  326. Slack SM, Horbett TA (1988) Physicochemical and biochemical aspects of fibrinogen adsorption from plasma and binary protein solutions onto polyethylene and glass. J Colloid Interface Sci 124:535–551CrossRefGoogle Scholar
  327. Spicer P (2005a) Cubosome processing – Industrial nanoparticle technology development. Chem Eng Res Des 83(A11):1283–1286CrossRefGoogle Scholar
  328. Spicer PT (2005b) Progress in liquid crystalline dispersions: cubosomes. Curr Opin Colloid Interface Sci 10(5–6):274–279CrossRefGoogle Scholar
  329. Spooner PJR, Watts A (1991a) Reversible unfolding of cytochrome c upon interaction with cardiolipin bilayers. 1. Evidence from deuterium NMR measurements. Biochemistry 30:3871–3879PubMedCrossRefGoogle Scholar
  330. Spooner PJR, Watts A (1991b) Reversible unfolding of cytochrome c upon interaction with cardiolipin bilayers. 2. Evidence from phosphorus-31 NMR measurements. Biochemistry 30:3880–3885PubMedCrossRefGoogle Scholar
  331. Stamm AA, Svendsen A, Skjold-Jørgensen J, Vissing T, Berts I, Nylander T (2018) The triolein/aqueous interface and lipase activity studied by spectroscopic ellipsometry and coarse grained simulations. Chem Phys Lipids 211:37–43.  https://doi.org/10.1016/j.chemphyslip.2017.10.011CrossRefPubMedGoogle Scholar
  332. Steinhardt J, Reynolds JA (1969) Multiple equilibria in proteins. Academic Press, New YorkGoogle Scholar
  333. Stenstam A, Khan A, Wennerström H (2001) The lysozyme-dodecyl sulfate system. An example of protein-surfactant aggregation. Langmuir 17:7513–7520CrossRefGoogle Scholar
  334. Subramanian M, Sheshadri BS, Venkatappa MP (1984) Interaction of cationic detergents, cetyl- and dodecylatrimethylammonium bromides with lysozyme. J Biochem (Tokyo) 95(2):413–421CrossRefGoogle Scholar
  335. Sukow WW, Sandberg HE, Lewis EA, Eatough DJ, Hansen LD (1980) Binding of the Triton X series of surfactants to bovine serum albumin. Biochemistry 19:912–917PubMedCrossRefGoogle Scholar
  336. Sun W, Vallooran JJ, Zabara A, Mezzenga R (2014) Controlling enzymatic activity and kinetics in swollen mesophases by physical nanoconfinement. Nanoscale 6:6853–6859PubMedCrossRefGoogle Scholar
  337. Svendsen A (2000) Lipase protein engineering. Biochim Biophys Acta 1543:223–238PubMedCrossRefGoogle Scholar
  338. Tamayo-Esquivel D, Ganem-Quintanar A, Martinez AL, Navarrete-Rodriguez M, Rodriguez-Romo S, Quintanar-Guerrero D (2006) Evaluation of the enhanced oral effect of omapatrilat-monolein nanoparticles prepared by the emulsification-diffusion method. J Nanosci Nanotechnol 6(9–10):3134–3138PubMedCrossRefGoogle Scholar
  339. Tanford C (1967) Physical chemistry of macromolecules. John Wiley & Sons, New YorkGoogle Scholar
  340. Tanford C (1980) The hydrophobic effect: formation of micelles and biological membranes2nd edn. John Wiley & Sons Inc., New YorkGoogle Scholar
  341. Tanford C, Epstein J (1954) The physical chemistry of insulin. I. Hydrogen ion titration curve of zinc-free insulin. J Am Chem Soc 76:2163–2169CrossRefGoogle Scholar
  342. Tanner RE, Herpigny B, Chen SH, Rha CK (1982) Conformational change of protein sodium dodecylsulfate complexes in solution: a study of dynamic light scattering. J Chem Phys 76(8):3866–3872CrossRefGoogle Scholar
  343. Templer RH (1998) Thermodynamic and theoretical aspects of cubic mesophases in nature and biological amphiphiles. Curr Opin Colloid Interface Sci 3:255–263CrossRefGoogle Scholar
  344. Thorn DC, Meehan S, Sunde M, Rekas A, Gras SL, MacPhee CE, Dobson CM, Wilson MR, Carver JA (2005) Amyloid fibril formation by bovine milk κ-casein and its inhibition by the molecular chaperones αS- and β-casein. Biochemistry 44:17027–17036PubMedCrossRefGoogle Scholar
  345. Tiberg F (1996) Physical characterization of non-ionic surfactant layers adsorbed at hydrophilic and hydrophobic solid surfaces by time-resolved ellipsometry. J Chem Soc Faraday Trans 92:531–538CrossRefGoogle Scholar
  346. Tilton RD, Blomberg E, Claesson PM (1993) Effect of anionic surfactant on interactions between lysozyme layers adsorbed on mica. Langmuir 9(8):2102–2108CrossRefGoogle Scholar
  347. Vacha R, Linse S, Lund M (2014) Surface effects on aggregation kinetics of amyloidogenic peptides. J Am Chem Soc 136(33):11776–11782.  https://doi.org/10.1021/ja505502eCrossRefPubMedGoogle Scholar
  348. Valldeperas M, Wisńiewska M, Ram-On M, Kesselman E, Danino D, Nylander T, Barauskas J (2016) Sponge phases and nanoparticle dispersions in aqueous mixtures of mono- and diglycerides. Langmuir 32:8650–8659PubMedCrossRefGoogle Scholar
  349. van der Goot FG, González-Mañas JM, Lakey JH, Pattus F (1991) A ‘molten-globule’ membrane-insertion intermediate of the pore-forming domain of colicin A. Nature 354:408–410PubMedCrossRefGoogle Scholar
  350. Vandoolaeghe P, Tiberg F, Nylander T (2006) Interfacial behavior of cubic liquid crystalline nanoparticles at hydrophilic and hydrophobic surfaces. Langmuir 22(22):9169–9174PubMedCrossRefGoogle Scholar
  351. Verger R (1997) ‘Interfacial activation’ of lipases: facts and artifacts. Trends Biotechnol 15:32–38CrossRefGoogle Scholar
  352. Vollhardt D (1993) Nucleation and growth in supersaturated monolayers. Adv Colloid Interf Sci 47:1–23CrossRefGoogle Scholar
  353. Vollhardt D, Fainerman VB (2000) Penetration of dissolved amphiphiles into two-dimensional aggregating lipid monolayers. Adv Colloid Interf Sci 86:103–151CrossRefGoogle Scholar
  354. Vollhardt D, Kato T, Kawano M (1996) Nucleation and growth of three-dimensional structures in supersatuarated arachidic acid monolayers: an Atomic Force Microscopy Study. J Phys Chem 100:4141–4147CrossRefGoogle Scholar
  355. Vroman L, Adams AL, Fischer GC, Munoz PC (1980) Interaction of high molecular weight kininogen, factor XII and fibrinogen in plasma at interfaces. Blood 55:156–159PubMedCrossRefGoogle Scholar
  356. Wadsater M, Barauskas J, Nylander T, Tiberg F (2014) Formation of highly structured cubic micellar lipid nanoparticles of soy phosphatidylcholine and glycerol dioleate and their degradation by triacylglycerol lipase. ACS Appl Mater Inter 6(10):7063–7069.  https://doi.org/10.1021/Am501489eCrossRefGoogle Scholar
  357. Wadsäter M, Barauskas J, Tiberg F, Nylander T (2018) The lipolytic degradation of highly structured cubic micellar nanoparticles of soy phosphatidylcholine and glycerol dioleate by phospholipase A2 and triacylglycerol lipase. Chem Phys Lipids 211:86–92.  https://doi.org/10.1016/j.chemphyslip.2017.11.011CrossRefPubMedGoogle Scholar
  358. Wahlgren MC, Arnebrant T (1991) Interaction between cetyltrimethylammonium bromide and sodium dodecyl sulfate wit β-lactoglobulin and lysozyme. J Colloid Interface Sci 142:503–511CrossRefGoogle Scholar
  359. Wahlgren MC, Arnebrant T (1992) The concentration dependence of adsorption from a mixture of β-lactoglobulin and sodium dodecyl sulfate onto methylated silica surfaces. J Colloid Interface Sci 148(1):201–206CrossRefGoogle Scholar
  360. Wahlgren M, Arnebrant T (1996) Removal of lysozyme from methylated silicon oxide surfaces by a non-ionic surfactant, pentaethylene glycol mono n-dodecyl ether (C(12)E(5)). Colloids Surf B Biointerfaces 6(2):63–69CrossRefGoogle Scholar
  361. Wahlgren MC, Arnebrant T, Askendal A, Welin-Klintström S (1993b) The elutability of fibrinogen by sodium dodecyl sulphate and alkyltrimethylammonium bromides. Colloids Surf A Physicochem Eng Aspects 70(2):151–158CrossRefGoogle Scholar
  362. Wahlgren MC, Paulsson MA, Arnebrant T (1993a) Adsorption of globular model proteins to silica and methylated silica surfaces and their elutability by dodecyltrimethylammonium bromide. Colloid Surf A 70:139–149CrossRefGoogle Scholar
  363. Wahlgren M, Welin-Klintström S, Arnebrant T, Askendal A, Elwing H (1995) Competition between fibrinogen and a non-ionic surfactant in adsorption to a wettability gradient surface. Colloids Surf B Biointerfaces 4:23–31CrossRefGoogle Scholar
  364. Wallin R, Arnebrant T (1994) The activity of lipase at the cubic liquid-crystalline phase/water interface. J Colloid Interface Sci 164:16–20CrossRefGoogle Scholar
  365. Wallin R, Engström S, Mandenius CF (1993) Stabilisation of glucose oxidase by entrapment in a cubic liquid crystalline phase. Biocatalysis 8:73–80CrossRefGoogle Scholar
  366. Wallis BA (1986) Structure of gramicidin A. Biophys J 49:295–306CrossRefGoogle Scholar
  367. Walstra P (2002) Physical chemistry of foods1st edn. Marcel Dekker Inc., New YorkCrossRefGoogle Scholar
  368. Waninge R, Nylander T, Paulsson M, Bergenstahl B (2003) Milk membrane lipid vesicle structures studied with Cryo-TEM. Colloids Surf B Biointerfaces 31(1–4):257–264CrossRefGoogle Scholar
  369. Waninge R, Paulsson M, Nylander T, Ninham B, Sellers P (1998) Binding of sodium dodecyl sulphate and dodecyl trimethyl ammonium chloride to β-lactoglobulin: a calorimetric study. Int Dairy J 8:141–148CrossRefGoogle Scholar
  370. Waninge R, Walstra P, Bastiaans J, Nieuwenhuijse H, Nylander T, Paulsson M, Bergenstahl B (2005) Competitive adsorption between beta-casein or beta-lactoglobulin and model milk membrane lipids at oil-water interfaces. J Agric Food Chem 53(3):716–724PubMedCrossRefGoogle Scholar
  371. Wannerberger K, Wahlgren M, Arnebrant T (1996) Adsorption from lipase surfactant solutions onto methylated silica surfaces. Colloids Surf B Biointerfaces 6(1):27–36CrossRefGoogle Scholar
  372. Warren DB, Anby MU, Hawley A, Boyd BJ (2011) Real time evolution of liquid crystalline nanostructure during the digestion of formulation lipids using synchrotron small-angle X-ray scattering. Langmuir 27:9528–9534PubMedCrossRefGoogle Scholar
  373. Welin-Klintström S, Askendal A, Elwing H (1993) Surfactant and protein interactions on wettability gradient surfaces. J Colloid Interface Sci 158(1):188–194CrossRefGoogle Scholar
  374. Westesen K, Wehler T (1993) Investigation of the particle-size distribution of a model intravenous emulsion. J Pharm Sci 82:1237–1244PubMedCrossRefGoogle Scholar
  375. Wijmans CM, Dickinson E (1999) Brownian dynamics simulation of the displacement of a protein monolayer by competitive absorption. Langmuir 15(24):8344–8348CrossRefGoogle Scholar
  376. Wilde PJ (2000) Interfaces: their role in foam and emulsion behaviour. Curr Opin Colloid Interface Sci 5(3–4):176–181CrossRefGoogle Scholar
  377. Wilde PJ, Chu BS (2011) Interfacial & colloidal aspects of lipid digestion. Adv Colloid Interface Sci 165:14–22PubMedCrossRefGoogle Scholar
  378. Wilde PJ, Clark DC (1993) The competitive displacement of β-lactoglobulin by Tween 20 from oil-water and air-water interfaces. J Colloid Interface Sci 155:48–54CrossRefGoogle Scholar
  379. Wilde PJ, Clark DC, Marion D (1993) Influence of competitive adsorption of a lysopalmitoylphosphatidylcholine on the functional properties of puroindoline, a lipid-binding protein isolated from wheat flour. J Agric Food Chem 41:1570–1576CrossRefGoogle Scholar
  380. Williams RJ, Phillips JN, Mysels KJ (1955) The critical micelle concetration of sodium lauryl sulphate at 25 °C. Trans Faraday Soc 51:728–737CrossRefGoogle Scholar
  381. Worle G, Siekmann B, Koch MHJ, Bunjes H (2006) Transformation of vesicular into cubic nanoparticles by autoclaving of aqueous monoolein/poloxamer dispersions. Eur J Pharm Sci 27(1):44–53PubMedCrossRefGoogle Scholar
  382. Xue J, Zhong Q (2014) Blending lecithin and gelatin improves the formation of thymol nanodispersions. J Agric Food Chem 62:2956–2962PubMedCrossRefGoogle Scholar
  383. Yaghmur A, de Campo L, Salentinig S, Sagalowicz L, Leser ME, Glatter O (2006) Oil-loaded monolinolein-based particles with confined inverse discontinuous cubic structure (Fd3m). Langmuir 22(2):517–521PubMedCrossRefGoogle Scholar
  384. Yamamoto Y, Araki M (1997) Effects of lecithin addition in oil or water phase on the stability of emulsions made with whey proteins. Biosci Biotech Biochem 61:1791–1795CrossRefGoogle Scholar
  385. Yonath A, Podjarny A, Honig B, Sielecki A, Traub W (1977a) Crystallographic studies of protein denaturation and renaturation. 2. Sodium dodecyl sulfate induced conformational changes in triclinic lysozyme. Biochemistry 16:1418–1424PubMedCrossRefGoogle Scholar
  386. Yonath A, Sielecki A, Moult J, Podjarny A, Traub W (1977b) Crystallographic studies of protein denaturation and renaturation. 1. Effects of denaturants on volume and x-ray pattern of cross-linked triclinic lysozyme crystals. Biochemistry 16:1413–1417PubMedCrossRefGoogle Scholar
  387. Zhai JL, Scoble JA, Li N, Lovrecz G, Waddington LJ, Tran N, Muir BW, Coia G, Kirby N, Drummond CJ, Mulet X (2015) Epidermal growth factor receptor-targeted lipid nanoparticles retain self-assembled nanostructures and provide high specificity. Nanoscale 7(7):2905–2913.  https://doi.org/10.1039/C4nr05200eCrossRefPubMedPubMedCentralGoogle Scholar
  388. Zhang R, Somasundaran P (2006) Advances in adsorption of surfactants and their mixtures at solid/solution interfaces. Adv Colloid Interf Sci 123:213–229CrossRefGoogle Scholar
  389. Zhao J, Vollhardt D, Brezesinski G, Siegel S, Wu J, Li JB, Miller R (2000) Effect of protein penetration into phospholipid monolayers: morphology and structure. Colloids Surf A Physicochem Eng Aspects 171:175–184CrossRefGoogle Scholar
  390. Zhmud B, Tiberg F (2005) Interfacial dynamics and structure of surfactant layers. Adv Colloid Interf Sci 113(1):21–42CrossRefGoogle Scholar
  391. Zoungrana T, Findenegg GH, Norde W (1997) Structure, stability, and activity of adsorbed enzymes. J Colloid Interface Sci 190:437–448PubMedCrossRefPubMedCentralGoogle Scholar
  392. Zuckermann MJ, Heimburg T (2001) Insertion and pore formation driven by adsorption of proteins onto lipid bilayer membrane–water interfaces. Biophys J 81:2458–2472PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Tommy Nylander
    • 1
    Email author
  • Thomas Arnebrant
    • 2
  • Marité Cárdenas
    • 2
  • Martin Bos
    • 3
  • Peter Wilde
    • 4
  1. 1.Physical Chemistry, Department of ChemistryLund UniversityLundSweden
  2. 2.Faculty of Health and Society, Department of Biomedical SciencesMalmö UniversityMalmöSweden
  3. 3.BosstampsWageningenThe Netherlands
  4. 4.Food Innovation and HealthQuadram Institute BioscienceNorwich Research ParkUK

Personalised recommendations