Advertisement

Assessing Drug Safety Assessment: Metformin Associated Lactic Acidosis

  • Adam LaCazeEmail author
  • Karl Winckel
Chapter
  • 21 Downloads
Part of the Boston Studies in the Philosophy and History of Science book series (BSPS, volume 338)

Abstract

This chapter examines two approaches to assessing drug safety evidence. Method-focused approaches, such as Evidence-based Medicine, are the dominant approaches to evidence evaluation in medicine. On this approach, a body of evidence is evaluated according to the method used to generate the evidence. A second approach to evidence evaluation focuses on causal assessment. One such approach is Russo and Williamson’s account of epistemic causality. A key insight of Russo and Williamson’s approach is that causal assessment consists in seeking evidence of difference-making and evidence of mechanisms. Evidence regarding metformin-associated lactic acidosis is used to compare the advice provided by method-focused and causal assessment approaches to evidence. We argue that the context of assessing drug efficacy and safety are more different than is typically appreciated and that these differences emphasise the importance of taking a causal assessment approach to assessing drug safety evidence.

References

  1. American Diabetes Association. (2016). Approaches to glycemic rreatment, Sec. 7. Diabetes Care, 39(Suppl. 1), S52–S59. ISSN: 0149-5992. https://doi.org/10.2337/dc15-S010.
  2. Bailey, C. J. (1992). Biguanides and NIDDM. Diabetes Care, 15(6), 755–772.CrossRefGoogle Scholar
  3. Broadbent, A. (2011). Inferring causation in epidemiology: Mechanisms, black boxes, and contrasts. In Causality in the sciences (pp. 45–69). Sept 2010. Oxford: Oxford University Press. ISBN: 9780191728921.  https://doi.org/10.1093/acprof:oso/9780199574131.003.0003.
  4. Brown, J. B., Pedula, K., Barzilay, J., Herson, M. K., & Latare, P. (1998). Lactic acidosis rates in type 2 diabetes. Diabetes Care, 21(10), 1659–1663. http://carediabetesjournalsorg/content/21/10/1659.short.CrossRefGoogle Scholar
  5. Cartwright, N. (2010). What are randomised controlled trials good for? Philosophical Studies, 147(1), 59–70. https://doi.org/10.1007/s11098-009-9450-2.CrossRefGoogle Scholar
  6. Cartwright, N. (2011). Predicting what will happen when we act. What counts for war rant? Preventive medicine, 53(4–5), 221–224. https://doi.org/10.1016/j.ypmed.2011.08.011. http://linkinghub.elsevier.com/retrieve/pii/%20S0091743511003008
  7. Collins, R., & MacMahon, S. (2007). In Rothwell, P. M. (Ed.), Reliable assessment of the effects of treatments on mortality and major morbidity (p. 326). Edinburgh: Elsevier. ISBN: 9780080447391.Google Scholar
  8. Collins, R., Reith, C., Emberson, J., Armitage, J., Baigent, C., Blackwell, L., Blumenthal, R., et al. (2016). Interpretation of the evidence for the efficacy and safety of statin therapy. The Lancet, 6736(16). ISSN: 0140-6736. https://doi.org/10.1016/S0140-6736(16)31357-5.
  9. Cryer, D. R., Nicholas, S. P., Henry, D. H., Mills, D. J., & Stadel, B. V. (2005). Comparative outcomes study of metformin intervention versus conventional approach the COSMIC Approach Study. Diabetes Care, 28(3), 539–543. ISSN: 0149-5992.Google Scholar
  10. Cusi, K., Consoli, A., & Defronzo, R. A. (1996). Metabolic effects of metformin on glucose and lactate metabolism in noninsulin-dependent diabetes mellitus. Journal of Clinical Endocrinology & Metabolism, 81(11), 4059–4067. http://press.endocrine.org/doi/abs/10.1210/%20jcem.81.11.8923861.Google Scholar
  11. Defronzo, R., Fleming, G. A., Chen, K., & Bicsak, T. A. (2016). Metformin-associated lactic acidosis: Current perspectives on causes and risk. Metabolism: Clinical and Experimental, 65(2): 20–29. ISSN: 15328600.  https://doi.org/10.1016/jmetabol.2015.10.14.
  12. Dell’Aglio, D. M., Perino, L. J., Kazzi, Z., Abramson, J., Schwartz, M. D., & Morgan, B. W. (2009). Acute metformin overdose: Examining serum pH, lactate level, and metformin concentrations in survivors versus nonsurvivors: A systematic review of the literature. Annals of Emergency Medicine, 54(6), 818–823. ISSN: 01960644. https://doi.org/10.1016/j.annemergmed.2009.04.023.
  13. Douglas, H. (2009). Science policy and the value-free ideal. Pittsburgh: University of Pittsburgh Press.CrossRefGoogle Scholar
  14. Duong, J. K., Furlong, T. J., Roberts, D. M., Graham, G. G., Greenfield, J. R., Williams, K. M., & Day, R. O. (2013). The role of metformin in metformin-associated lactic acidosis (MALA): Case series and formulation of a model of pathogenesis. Drug Safety, 36, 733–746. ISSN: 0114-5916. https://doi.org/10.1007/s40264-013-0038-6. http://wwwncbinlm.nih.gov/pubmed/23549904.
  15. Edwards, I. R. (2012). Considerations on causality in pharmacovigilance. International Journal of Risk and Safety in Medicine, 24(1), 41–54. ISSN: 09246479.  https://doi.org/10.3233/JRS-2012-0552.
  16. Food and Drug Administration. (1979). Phenformin hydrochloride; Withdrawal of approval of new drug application; Final decision. Technical report 58. http://www.fdagov/ohrms/dockets/ac/98/briefingbook/1998-%203454B1%7B%5C_%7D03%7B%5C_%7DWL38.pdf
  17. Fulop, M., & Hoberman, H. D. (1976). Phenformin-associated lactic acidosis. Diabetes, 25(4), 292–296.CrossRefGoogle Scholar
  18. Gillies, D. (2011). The Russo-Williamson thesis and the question of whether smoking causes heart disease. In Causality in the Sciences (pp. 110–125). ISBN: 9780199682676.  https://doi.org/10.1093/acprof.
  19. Glasziou, P., Chalmers, I., Rawlins, M., & Mcculloch, P. (2007). When are randomised trials unnecessary? Picking signal from noise. BMJ (Clinical Researched), 334(7589), 349–351.  https://doi.org/10.1136/bmj.39070.527986.68.CrossRefGoogle Scholar
  20. Gueriguian, J., Green, L., Misbin, R. I., Stadel, B., Fleming, G. A., Deutsch, J. C., Santhosh-Kumar, C. R., Kolhouse, J. F., DeFronzo, R. A., & Goodman, A. M. (1996). Efficacy of metformin in non-insulin-dependent diabetes mellitus [2]. New England Journal of Medicine, 334(4), 269–270.CrossRefGoogle Scholar
  21. Guyatt, G. H., Oxman, A. D., Vist, G. E., Kunz, R., Falck-Ytter, Y., Alonso-Coello, P., & Schunemann, H. J. (2008). GRADE: An emerging consensus on rating quality of evidence and strength of recommendations. BMJ, 336(7650), 924–926. ISSN: 0959-8138.  https://doi.org/10.1136/bmj.39489.470347AD.
  22. Higgins, J. P. T., & Green, S. (Eds.). (2008). Cochrane handbook for systematic reviews of interventions. Chichester: John Wiley & Sons, Ltd. ISBN: 9780470712184. https://doi.org/10.1002/9780470712184.
  23. Hill, A. B. (1965). Austin Bradford Hill,“The Environment and Disease: Association or Causation?” Proceedings of the Royal Society of Medicine, 58, 295–300.Google Scholar
  24. Howick, J., Glasziou, P., & Aronson, J. K. (2009). The evolution of evidence hierarchies: What can Bradford Hill’s ‘guidelines for causation’ contribute? JRSM, 102(5), 186–194. ISSN: 0141-0768.  https://doi.org/10.1258/jrsm.2009.090020.
  25. Illari, P. M. (2011). Mechanistic evidence: Disambiguating the Russo-Williamson thesis. International Studies in the Philosophy of Science, 25(2), 139–157. ISSN: 0269-8595. https://doi.org/10.1080/02698595.2011.574856.
  26. Kadane, J. B., & Seidenfeld, T. (1990). Randomization in a bayesian perspective. Journal of Statistical Planning and Inference, 25(3), 329–345. http://www.sciencedirect.com/science/article/B6V0M45SJDGS%20B/2/a0534f4c1e0734852c3b08fdfc8961c.CrossRefGoogle Scholar
  27. Karch, F.E, & Lasagna, L. (1977). Toward the operational identification of adverse drug reactions. Clinical Pharmacology and Therapeutics, 21(3), 247–254.CrossRefGoogle Scholar
  28. LaCaze, A. (2013). Why randomized interventional studies. The Journal of Medicine and Philosophy, 38(4), 352–368.  https://doi.org/10.1093/jmp/jht028.CrossRefGoogle Scholar
  29. Lalau, J. D., & Race, J. M. (1999a). Lactic acidosis in metformin therapy. Drugs, 58(Suppl. 1), 55–82. http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?%20dbfrom=pubmed%7B%5C&%.7Did=10576527%7B%5C&%7Dretmode=ref%7B%5C&%7Dcmd=prlinks.CrossRefGoogle Scholar
  30. Lalau, J. D., & Race, J. M. (1999b). Lactic acidosis in metformin treated patients. Drug Safety, 20(4), 377–384.CrossRefGoogle Scholar
  31. Landes, J., Osimani, B., & Poellinger, R. (2018). Epistemology of causal inference in pharmacology: Towards a framework for the assessment of harms. European Journal for Philosophy of Science, 8(1), 3–49. https://doi.org/10.1007/s13194-017-0169-1.CrossRefGoogle Scholar
  32. Misbin, R. I. (1977). Phenformin-associated lactic acidosis: Pathogenesis and treatment. Annals of Internal Medicine, 87(5), 591–595. http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elinkfcgi?%20dbfrom=pubmed%7B%5C&%7Did=921092%7B%5C&%7Dretmode=ref%7B%5C&%7Dcmd=prlinks.CrossRefGoogle Scholar
  33. Misbin, R. I. (2004). The phantom of lactic acidosis due to metformin in patients with diabetes. Diabetes Care, 27(7), 1791–1793.CrossRefGoogle Scholar
  34. Misbin, R. I., Green, L., Stadel, B. V., Gueriguian, J. L., Gubbi, A., & Fleming, G. A. (1998). Lactic acidosis in patients with diabetes treated with metformin. The New England Journal of Medicine, 338(4), 265–266.  https://doi.org/10.1056/NEJM199801223380415. http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elinkfcgi?%20dbfrom=pubmed%7B%5C&%7Did=9441244%7B%5C&%7Dretmode=ref%7B%5C&%7Dcmd=prlinks
  35. Naranjo, C. A., Busto, U., Sellers, E. M., Sandor, P., Ruiz, I., Roberts, E. A., Janecek, E., Domecq, C., & Greenblatt, D. J. (1981). A method for estimating the probability of adverse drug reactions. Clinical Pharmacology & Therapeutics, 30(2), 239–245. http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?%20dbfrom=pubmed%7B%5C&%7Did=7249508%7B%5C&%7Dretmode=ref%7B%5C&%7Dcmd=prlinks CrossRefGoogle Scholar
  36. OCEBM Levels of Evidence Working Group. (2011). Oxford centre for evidence-based medicine 2011 levels of evidence. http://www.cebm.net/ocebm-levels-of-evidence
  37. Osimani, B. (2013). Until RCT proven? On the asymmetry of evidence requirements for risk assessment. Journal of Evaluation in Clinical Practice, 19(3), 454–462.  https://doi.org/10.1111/jep.12039. http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?%20dbfrom=pubmed%7B%5C&%7Did=23692227%7B%5C&%7Dretmode=ref%7B%5C&%7Dcmd=prlinks
  38. Osimani, B. (2014a). Hunting side effects and explaining them: Should we reverse evidence hierarchies upside down? Topoi, 33, 295–312. ISSN: 19516401. https://doi.org/10.1007/s11245-013-9194-7.
  39. Osimani, B. (2014b). Safety vs. Efficacy assessment of pharmaceuticals: Epistemological rationales and methods. Preventive Medicine Reports, 1, 9–13. ISSN: 22113355. https://doi.org/10.1016/j.pmedr.2014.08.002.
  40. Osimani, B., & Mignini, F. (2015). Causal assessment of pharmaceutical treatments: Why standards of evidence should not be the same for benefits and harms. Drug Safety, 38, 1–11. https://doi.org/10.1007/s40264-014-0249-5.CrossRefGoogle Scholar
  41. Pernicova, I., & Korbonits, M. (2014). Metformin—mode of action and clinical implications for diabetes and cancer. Nature Reviews. Endocrinology, 10(3), 143–156.  https://doi.org/10.1038/nrendo.2013.256.CrossRefGoogle Scholar
  42. Reiss, J. (2015a). A pragmatist theory of evidence. Philosophy of Science, 82(3), 341–362.CrossRefGoogle Scholar
  43. Reiss, J. (2015b). Causation, evidence and inference (1st ed., p. 258). New York: Routledge.Google Scholar
  44. Russo, F., & Williamson, J. (2007). Interpreting causality in the health sciences. International Studies in the Philosophy of Science, 21(2), 157–170. https://doi.org/10.1080/02698590701498084.CrossRefGoogle Scholar
  45. Russo, F., & Williamson, J. (2011). Epistemic causality and evidence-based medicine. History and Philosophy of the Life Sciences, 33(4), 563–581. http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?%20dbfrom=pubmed%7B%5C&%7Did=22662510%7B%5C&%7Dretmode=ref%7B%5C&%7Dcmd=prlinks Google Scholar
  46. Sackett, D. L. (2005). The principles behind the tactics of performing therapeutic trials. In R. Brian Haynes, D. L. Sackett, G. H. Guyatt, & P. Tugwell (Eds.), Clinical epidemiology: How to do clinical practice research (3rd ed., pp. 173–243). Lippincott Williams & Wilkins.Google Scholar
  47. Salpeter, S. R., Greyber, E., Pasternak, G. A., & Salpeter, E. E. (2010). Risk of fatal and nonfatal lactic acidosis with metformin use in type 2 diabetes mellitus. Cochrane Database of Systematic Reviews (Online), 1, CD002967.Google Scholar
  48. Senn, S. 1994. Fisher’s game with the devil. Statistics in Medicine, 13(3), 217–230.CrossRefGoogle Scholar
  49. Stang, M., Wysowski, D. K., & Butler-Jones, D. (1999). Incidence of lactic acidosis in metformin users. Diabetes Care, 22(6), 925–927. http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?%20dbfrom=pubmed%7B%5C&%7Did=10372243%7B%5C&%7Dretmode=ref%7B%5C&%7Dcmd=prlinks CrossRefGoogle Scholar
  50. Straus, S. E., Glasziou, P., Richardson, W. S., & Haynes, R. B. (2011). Evidence-based medicine: How to practice and teach it (4th ed., p. 312). Edinburgh: Churchill Livingstone. ISBN: 9780702031274.Google Scholar
  51. Tahrani, A. A., Varughese, G. I., Scarpello, J. H., & Hanna, F. W. F. (2007). Metformin, heart failure, and lactic acidosis: Is metformin absolutely contraindicated? BMJ (Clinical research ed), 335(7618), 508–512.  https://doi.org/10.1136/bmj.39255.669444.AE.CrossRefGoogle Scholar
  52. The Royal Australian College of General Practitioners. (2016). General practice management of type 2 diabetes: 2016–18. East Melbourne: VIC Royal Australian College of General Practitioners. www.racgp.org.au Google Scholar
  53. UKPDS Study Group. (1998). Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). The Lancet, 352(9131), 854–865. http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?%20dbfrom=pubmed%7B%5C&%7Did=9742977%7B%5C&%7Dretmode=ref%7B%5C&%7Dcmd=prlinks CrossRefGoogle Scholar
  54. Urbach, P. (1985). Randomization and the design of experiments. Philosophy of Science, 52, 256–273.CrossRefGoogle Scholar
  55. Vandenbroucke, J. P. (2008). Observational research, randomised trials, and two views of medical science. PLoS Medicine, 5(3), e67.  https://doi.org/10.1371/journal.CrossRefGoogle Scholar
  56. Vandenbroucke, J. P., & Psaty, B. M. (2008). Benefits and risks of drug treatments. Journal of the American Medical Association, 300(20), 2417–2419.CrossRefGoogle Scholar
  57. Waters, A. K., Morgan, D. B., & Wales, J. K. (1978). Blood lactate and pyruvate levels in diabetic patients treated with biguanides with and without sulphonylureas. Diabetologia, 98(14), 95–98.CrossRefGoogle Scholar
  58. WHO-UMC. (2014). The use of the WHO-UMC system for standardised case causality assessment. Technical report.Google Scholar
  59. Worrall, J. (2007). Why there’s no cause to randomize. The British Journal for the Philosophy of Science, 58(3), 451–488.  https://doi.org/10.1093/bjps/axm024.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.School of PharmacyThe University of QueenslandBrisbaneAustralia
  2. 2.Princess Alexandra HospitalBrisbaneAustralia

Personalised recommendations