Transferrin Receptor and Targeting Strategies

  • Harsh A. Joshi
  • Esha S. Attar
  • Prajakta Dandekar
  • Padma V. DevarajanEmail author
Part of the AAPS Advances in the Pharmaceutical Sciences Series book series (AAPS, volume 39)


Treatment of cancer is an extraordinary challenge using conventional therapy due to serious side effects. Targeted delivery of therapeutics has changed this paradigm. Among various approaches, receptor-mediated targeting presents great promise. Since transferrin receptor (TfR) is known to be overarticulated in various cancers, it is a lucrative target in cancer research. TfR-mediated drug delivery can deliver therapeutic cargo into tumor cells to enhance cytotoxicity with significant reduction in systemic toxicity. This has propelled the exploration of innovative targeting approaches using nanodrug delivery systems. This chapter discusses the TfR physiology and related pathophysiology, and also summarizes various drug-targeting strategies and theranostics, which rely on transferrin (Tf) as the targeting ligand for cell-directed delivery. Further forays into evaluating TfR-mediated targeting as a strategy to tackle brain infections are also proposed.


Transferrin targeted drug delivery cancer infection blood–brain barrier theranostics 



Acute leukemia


Acute lymphoblastic leukemia


Critical micelle concentration

Copper sulfate





Diaminobutyric poly(propylene imine)


Iron-carrier protein transferrin


Hereditary hemochromatosis protein


Ferritin-H homopolymer


Hypoxia-inducible factors


Human lactoferrin


Hypoxia-responsive elements


Human serum transferrin


Human serum transferrin


Antihuman TfR antibody


Monoclonal antibody 454A12 P


Monoclonal antibody 5E9


Monoclonal antibody HB21


Chimeric human TfR antibody fused


Iron-responsive elements


Iron regulatory proteins


Rabbit serum transferrin




Mammalian target of rapamycin




Nanostructured lipid carriers


Chicken ovotransferrin


Polyethylene glycol


Polyethylene glycol-phosphatidylethanolamine


Prolyl hydroxylases




Arginine–glycine–aspartic acid


Reactive oxygen species




Solid lipid nanoparticles






Transferrin receptor


Transferrin receptor 1


Transferrin receptor 2


D-α-tocopheryl polyethylene glycol 1000 succinate




  1. 1.
    Langer R. Drug delivery and targeting. Nature-London. 1998;30:5–10.Google Scholar
  2. 2.
    Maruyama K, Ishida O, Takizawa T, Moribe K. Possibility of active targeting to tumor tissues with liposomes. Adv Drug Deliv Rev. 1999;40(1–2):89–102.PubMedCrossRefGoogle Scholar
  3. 3.
    Vyas SP, Sihorkar V. Endogenous carriers and ligands in non-immunogenic site-specific drug delivery. Adv Drug Deliv Rev. 2000;43(2–3):101–64.PubMedCrossRefGoogle Scholar
  4. 4.
    Li H, Qian ZM. Transferrin/transferrin receptor-mediated drug delivery. Med Res Rev. 2002;22(3):225–50.PubMedCrossRefGoogle Scholar
  5. 5.
    Shen Y, Li X, Dong D, Zhang B, Xue Y, Shang P. Transferrin receptor 1 in cancer: a new sight for cancer therapy. Am J Cancer Res. 2018;8(6):916–31.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Ponka P, Lok CN. The transferrin receptor: role in health and disease. Int J Biochem Cell Biol. 1999;31(10):1111–37.PubMedCrossRefGoogle Scholar
  7. 7.
    Qian ZM, Li H, Sun H, Ho K. Targeted drug delivery via the transferrin receptor-mediated endocytosis pathway. Pharmacol Rev. 2002;54(4):561–87.PubMedCrossRefGoogle Scholar
  8. 8.
    McClelland A, Kühn LC, Ruddle FH. The human transferrin receptor gene: genomic organization, and the complete primary structure of the receptor deduced from a cDNA sequence. Cell. 1984;39(2):267–74.PubMedCrossRefGoogle Scholar
  9. 9.
    Tortorella S, Karagiannis TC. Transferrin receptor-mediated endocytosis: a useful target for cancer therapy. J Membr Biol. 2014;247(4):291–307.PubMedCrossRefGoogle Scholar
  10. 10.
    Lawrence CM, Ray S, Babyonyshev M, Galluser R, Borhani DW, Harrison SC. Crystal structure of the ectodomain of human transferrin receptor. Science. 1999;286(5440):779–82.PubMedCrossRefGoogle Scholar
  11. 11.
    Sun H, Li H, Sadler PJ. Transferrin as a metal ion mediator. Chem Rev. 1999;99(9):2817–42.PubMedCrossRefGoogle Scholar
  12. 12.
    Gammella E, Buratti P, Cairo G, Recalcati S. The transferrin receptor: the cellular iron gate. Metallomics. 2017;9(10):1367–75.PubMedCrossRefGoogle Scholar
  13. 13.
    Cheng Y, Zak O, Aisen P, Harrison SC, Walz T. Structure of the human transferrin receptor-transferrin complex. Cell. 2004;116(4):565–76.PubMedCrossRefGoogle Scholar
  14. 14.
    Muckenthaler MU, Rivella S, Hentze MW, Galy B. A red carpet for iron metabolism. Cell. 2017;168(3):344–61.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Lui GY, Kovacevic Z, Richardson V, Merlot AM, Kalinowski DS, Richardson DR. Targeting cancer by binding iron: dissecting cellular signaling pathways. Oncotarget. 2015;6(22):18748–79.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Torti SV, Torti FM. Iron and cancer: more ore to be mined. Nat Rev Cancer. 2013;13(5):342–55.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Woith W, Nüsslein I, Antoni C, Dejica DI, Winkler TH, Herrmann M, Pirner K, Kalden JR, Manger B. A soluble form of the human transferrin receptor is released by activated lymphocytes in vitro. Clin Exp Immunol. 1993;92(3):537–42.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Daniels TR, Delgado T, Rodriguez JA, Helguera G, Penichet ML. The transferrin receptor part I: biology and targeting with cytotoxic antibodies for the treatment of cancer. Clin Immunol. 2006;121(2):144–58.PubMedCrossRefGoogle Scholar
  19. 19.
    Rouault T, Rao K, Harford J, Mattia E, Klausner RD. Hemin, chelatable iron, and the regulation of transferrin receptor biosynthesis. J Biol Chem. 1985;260(27):14862–6.PubMedGoogle Scholar
  20. 20.
    Kazan HH, Urfali-Mamatoglu C, Gunduz U. Iron metabolism and drug resistance in cancer. Biometals. 2017;30(5):629–41.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Lazaros G, Antonatou K, Vassilopoulos D. The therapeutic role of interleukin-1 inhibition in idiopathic recurrent pericarditis: current evidence and future challenges. Front Med. 2017;4:78.CrossRefGoogle Scholar
  22. 22.
    Muto Y, Nishiyama M, Nita A, Moroishi T, Nakayama KI. Essential role of FBXL5-mediated cellular iron homeostasis in maintenance of hematopoietic stem cells. Nat Commun. 2017;8:16114.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Anderson SA, Nizzi CP, Chang YI, Deck KM, Schmidt PJ, Galy B, Damnernsawad A, Broman AT, Kendziorski C, Hentze MW, Fleming MD. The IRP1-HIF-2α axis coordinates iron and oxygen sensing with erythropoiesis and iron absorption. Cell Metab. 2013;17(2):282–90.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Udensi UK, Tackett AJ, Byrum S, Avaritt NL, Sengupta D, Moreland LW, Tchounwou PB, Isokpehi RD. Proteomics-based identification of differentially abundant proteins from human keratinocytes exposed to arsenic trioxide. J Proteomics Bioinform. 2014;7(7):166–78.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Chen J, Wang J, Meyers KR, Enns CA. Transferrin-directed internalization and cycling of transferrin receptor 2. Traffic. 2009;10(10):1488–501.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Giannetti AM, Snow PM, Zak O, Björkman PJ. Mechanism for multiple ligand recognition by the human transferrin receptor. PLoS Biol. 2003;1(3):e51.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Buchegger F, Trowbridge IS, Liu LF, White S, Collawn JF. Functional analysis of human/chicken transferrin receptor chimeras indicates that the carboxy-terminal region is important for ligand binding. Eur J Biochem. 1996;235(1–2):9–17.PubMedCrossRefGoogle Scholar
  28. 28.
    Dubljevic V, Adnan SA, Goding JW. A conserved RGD (Arg-Gly-Asp) motif in the transferrin receptor is required for binding to transferrin. Biochem J. 1999;341(1):11–4.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Waheed A, Grubb JH, Zhou XY, Tomatsu S, Fleming RE, Costaldi ME, Britton RS, Bacon BR, Sly WS. Regulation of transferrin-mediated iron uptake by HFE, the protein defective in hereditary hemochromatosis. Proc Natl Acad Sci. 2002;99(5):3117–22.PubMedCrossRefGoogle Scholar
  30. 30.
    Ryschich E, Huszty G, Knaebel HP, Hartel M, Büchler MW, Schmidt J. Transferrin receptor is a marker of malignant phenotype in human pancreatic cancer and in neuroendocrine carcinoma of the pancreas. Eur J Cancer. 2004;40(9):1418–22.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Kindrat I, Tryndyak V, de Conti A, Shpyleva S, Mudalige TK, Kobets T, Erstenyuk AM, Beland FA, Pogribny IP. MicroRNA-152-mediated dysregulation of hepatic transferrin receptor 1 in liver carcinogenesis. Oncotarget. 2016;7(2):1276–87.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Rychtarcikova Z, Lettlova S, Tomkova V, Korenkova V, Langerova L, Simonova E, Zjablovskaja P, Alberich-Jorda M, Neuzil J, Truksa J. Tumor-initiating cells of breast and prostate origin show alterations in the expression of genes related to iron metabolism. Oncotarget. 2017;8(4):6376–98.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Wang B, Zhang J, Song F, Tian M, Shi B, Jiang H, Xu W, Wang H, Zhou M, Pan X, Gu J. EGFR regulates iron homeostasis to promote cancer growth through redistribution of transferrin receptor 1. Cancer Lett. 2016;381(2):331–40.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Prutki M, Poljak-Blazi M, Jakopovic M, Tomas D, Stipancic I, Zarkovic N. Altered iron metabolism, transferrin receptor 1 and ferritin in patients with colon cancer. Cancer Lett. 2006;238(2):188–96.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Rosager AM, Sørensen MD, Dahlrot RH, Hansen S, Schonberg DL, Rich JN, Lathia JD, Kristensen BW. Transferrin receptor-1 and ferritin heavy and light chains in astrocytic brain tumors: expression and prognostic value. PLoS One. 2017;12(8):e0182954.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Chirasani SR, Markovic DS, Synowitz M, Eichler SA, Wisniewski P, Kaminska B, Otto A, Wanker E, Schäfer M, Chiarugi P, Meier JC. Transferrin-receptor-mediated iron accumulation controls proliferation and glutamate release in glioma cells. J Mol Med. 2009;87(2):153–67.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Singh M, Mugler K, Hailoo DW, Burke S, Nemesure B, Torkko K, Shroyer KR. Differential expression of transferrin receptor (TfR) in a spectrum of normal to malignant breast tissues: implications for in situ and invasive carcinoma. Appl Immunohistochem Mol Morphol. 2011;19(5):417–23.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Wang W, Deng Z, Hatcher H, Miller LD, Di X, Tesfay L, Sui G, D’Agostino RB, Torti FM, Torti SV. IRP2 regulates breast tumor growth. Cancer Res. 2014;74(2):497–507.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Okazaki F, Matsunaga N, Okazaki H, Azuma H, Hamamura K, Tsuruta A, Tsurudome Y, Ogino T, Hara Y, Suzuki T, Hyodo K. Circadian clock in a mouse colon tumor regulates intracellular iron levels to promote tumor progression. J Biol Chem. 2016;291(13):7017–28.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Horniblow RD, Bedford M, Hollingworth R, Evans S, Sutton E, Lal N, Beggs A, Iqbal TH, Tselepis C. BRAF mutations are associated with increased iron regulatory protein-2 expression in colorectal tumorigenesis. Cancer Sci. 2017;108(6):1135–43.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Liu Q, Wang M, Hu Y, Xing H, Chen X, Zhang Y, Zhu P. Significance of CD71 expression by flow cytometry in diagnosis of acute leukemia. Leuk Lymphoma. 2014;55(4):892–8.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Płoszyńska A, Ruckemann-Dziurdzińska K, Jóźwik A, Mikosik A, Lisowska K, Balcerska A, Witkowski JM. Cytometric evaluation of transferrin receptor 1 (CD71) in childhood acute lymphoblastic leukemia. Folia Histochem Cytobiol. 2012;50(2):304–11.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Crielaard BJ, Lammers T, Rivella S. Targeting iron metabolism in drug discovery and delivery. Nat Rev Drug Discov. 2017;16(6):400–23.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Horonchik L, Wessling-Resnick M. The small-molecule iron transport inhibitor ferristatin /NSC306711 promotes degradation of the transferrin receptor. Chem Biol. 2008;15(7):647–53.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Trowbridge IS, Lesley J, Schulte R. Murine cell surface transferrin receptor: studies with an anti-receptor monoclonal antibody. J Cell Physiol. 1982;112(3):403–10.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Lesley JF, Schulte RJ. Inhibition of cell growth by monoclonal anti-transferrin receptor antibodies. Mol Cell Biol. 1985;5(8):1814–21.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Sauvage CA, Mendelsohn JC, Lesley JF, Trowbridge IS. Effects of monoclonal antibodies that block transferrin receptor function on the in vivo growth of a syngeneic murine leukemia. Cancer Res. 1987;47(3):747–53.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Lesley J, Schulte R, Woods J. Modulation of transferrin receptor expression and function by anti-transferrin receptor antibodies and antibody fragments. Exp Cell Res. 1989;182(1):215–33.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Kemp JD, Cardillo T, Stewart BC, Kehrberg E, Weiner G, Hedlund B, Naumann PW. Inhibition of lymphoma growth in vivo by combined treatment with hydroxyethyl starch deferoxamine conjugate and IgG monoclonal antibodies against the transferrin receptor. Cancer Res. 1995;55(17):3817–24.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Taetle R, Honeysett JM, Trowbridge I. Effects of anti-transferrin receptor antibodies on growth of normal and malignant myeloid cells. Int J Cancer. 1983;32(3):343–9.PubMedCrossRefGoogle Scholar
  51. 51.
    Petrini M, Pelosi-Testa E, Sposi NM, Mastroberardino G, Camagna A, Bottero L, Mavilio F, Testa U, Peschle C. Constitutive expression and abnormal glycosylation of transferrin receptor in acute T-cell leukemia. Cancer Res. 1989;49(24 Part 1):6989–96.PubMedPubMedCentralGoogle Scholar
  52. 52.
    White S, Taetle R, Seligman PA, Rutherford M, Trowbridge IS. Combinations of anti-transferrin receptor monoclonal antibodies inhibit human tumor cell growth in vitro and in vivo: evidence for synergistic antiproliferative effects. Cancer Res. 1990;50(19):6295–301.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Taetle R, Santos BD, Ohsugi Y, Koihihara Y, Yamada Y, Messner H, Dalton W. Effects of combined antigrowth factor receptor treatment on in vitro growth of multiple myeloma. JNCI: J Nat Cancer Inst. 1994;86(6):450–5.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Jones DT, Trowbridge IS, Harris AL. Effects of transferrin receptor blockade on cancer cell proliferation and hypoxia-inducible factor function and their differential regulation by ascorbate. Cancer Res. 2006;66(5):2749–56.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Moura IC, Lepelletier Y, Arnulf B, England P, Baude C, Beaumont C, Bazarbachi A, Benhamou M, Monteiro RC, Hermine O. A neutralizing monoclonal antibody (mAb A24) directed against the transferrin receptor induces apoptosis of tumor T lymphocytes from ATL patients. Blood. 2004;103(5):1838–45.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Baker EN. Structure and reactivity of transferrins. Adv Inorg Chem. 1994;41(C):389–463.CrossRefGoogle Scholar
  57. 57.
    Kawabata H, Nakamaki T, Ikonomi P, Smith RD, Germain RS, Koeffler HP. Expression of transferrin receptor 2 in normal and neoplastic hematopoietic cells. Blood. 2001;98(9):2714–9.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    He QY, Mason AB, Woodworth RC, Tam BM, MacGillivray RT, Grady JK, Chasteen ND. Inequivalence of the two tyrosine ligands in the N-lobe of human serum transferrin. Biochemistry. 1997;36(48):14853–60.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Daniels-Wells TR, Penichet ML. Transferrin receptor 1: a target for antibody-mediated cancer therapy. Immunotherapy. 2016;8(9):991–4.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Scott CF Jr, Goldmacher VS, Lambert JM, Jackson JV, Mclntyre GD. An immunotoxin composed of a monoclonal antitransferrin receptor antibody linked by a disulfide bond to the ribosome-inactivating protein gelonin: potent in vitro and in vivo effects against human tumors. J Natl Cancer Inst. 1987;79(5):1163–72.PubMedGoogle Scholar
  61. 61.
    Trowbridge IS, Domingo DL. Anti-transferrin receptor monoclonal antibody and toxin–antibody conjugates affect growth of human tumour cells. Nature. 1981;294(5837):171–3.PubMedCrossRefGoogle Scholar
  62. 62.
    Martell LA, Agrawal A, Ross DA, Muraszko KM. Efficacy of transferrin receptor-targeted immunotoxins in brain tumor cell lines and pediatric brain tumors. Cancer Res. 1993;53(6):1348–53.PubMedGoogle Scholar
  63. 63.
    Laske DW, Muraszko KM, Oldfield EH, DeVroom HL, Sung C, Dedrick RL, Simon TR, Colandrea J, Copeland C, Katz D, Greenfield L. Intraventricular immunotoxin therapy for leptomeningeal neoplasia. Neurosurgery. 1997;41(5):1039–51.PubMedCrossRefGoogle Scholar
  64. 64.
    Daniels TR, Ng PP, Delgado T, Lynch MR, Schiller G, Helguera G, Penichet ML. Conjugation of an anti–-transferrin receptor IgG3-avidin fusion protein with biotinylated saporin results in significant enhancement of its cytotoxicity against malignant hematopoietic cells. Mol Cancer Ther. 2007;6(11):2995–3008.PubMedCrossRefGoogle Scholar
  65. 65.
    Pirker R, FitzGerald DJ, Willingham MC, Pastan I. Enhancement of the activity of immunotoxins made with either ricin A chain or Pseudomonas exotoxin in human ovarian and epidermoid carcinoma cell lines. Cancer Res. 1988;48(14):3919–23.PubMedGoogle Scholar
  66. 66.
    Daniels TR, Bernabeu E, Rodríguez JA, Patel S, Kozman M, Chiappetta DA, Holler E, Ljubimova JY, Helguera G, Penichet ML. The transferrin receptor and the targeted delivery of therapeutic agents against cancer. Biochimica et Biophysica Acta (BBA)-General Subjects. 2012;1820(3):291–317.CrossRefGoogle Scholar
  67. 67.
    Singh P, Destito G, Schneemann A, Manchester M. Canine parvovirus-like particles, a novel nanomaterial for tumor targeting. J Nanobiotechnol. 2006;4(1):2.CrossRefGoogle Scholar
  68. 68.
    Tan Y, Liu W, Zhu Z, Lang L, Wang J, Huang M, Zhang M, Yang C. Selection and identification of transferrin receptor-specific peptides as recognition probes for cancer cells. Anal Bioanal Chem. 2018;410(3):1071–7.PubMedCrossRefGoogle Scholar
  69. 69.
    Riaz MK, Zhang X, Wong KH, Chen H, Liu Q, Chen X, Zhang G, Lu A, Yang Z. Pulmonary delivery of transferrin receptors targeting peptide surface-functionalized liposomes augments the chemotherapeutic effect of quercetin in lung cancer therapy. Int J Nanomedicine. 2019;14:2879–902.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Soni V, Kohli DV, Jain SK. Transferrin-conjugated liposomal system for improved delivery of 5-fluorouracil to brain. J Drug Target. 2008;16(1):73–8.PubMedCrossRefGoogle Scholar
  71. 71.
    Barabas K, Sizensky JA, Faulk WP. Transferrin conjugates of adriamycin are cytotoxic without intercalating nuclear DNA. J Biol Chem. 1992;267(13):9437–42.PubMedGoogle Scholar
  72. 72.
    Bicamumpaka CY, Pagé MI. In vitro cytotoxicity of paclitaxel-transferrin conjugate on H69 cells. Oncol Rep. 1998;5(6):1381–4.PubMedGoogle Scholar
  73. 73.
    Shan L, Shan X, Zhang T, Zhai K, Gao G, Chen X, Gu Y. Transferrin-conjugated paclitaxel prodrugs for targeted cancer therapy. RSC Adv. 2016;6(81):77987–98.CrossRefGoogle Scholar
  74. 74.
    Peng H, Jin H, Zhuo H, Huang H. Enhanced antitumor efficacy of cisplatin for treating ovarian cancer in vitro and in vivo via transferrin binding. Oncotarget. 2017;8(28):45597–611.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Hoshino T, Misaki M, Yamamoto M, Shimizu H, Ogawa Y, Toguchi H. Receptor-binding, in vitro cytotoxicity, and in vivo distribution of transferrin-bound cis-platinum (II) of differing molar ratios. J Control Release. 1995;37(1–2):75–81.CrossRefGoogle Scholar
  76. 76.
    Head JF, Wang FE, Elliott RL. Antineoplastic drugs that interfere with iron metabolism in cancer cells. Adv Enzym Regul. 1997;37:147–69.CrossRefGoogle Scholar
  77. 77.
    Kratz F. Drug conjugates with albumin and transferrin. Expert Opin Ther Pat. 2002;12(3):433–9.CrossRefGoogle Scholar
  78. 78.
    Sonali, Singh RP, Singh N, Sharma G, Vijayakumar MR, Koch B, Singh S, Singh U, Dash D, Pandey BL, Muthu MS. Transferrin liposomes of docetaxel for brain-targeted cancer applications: formulation and brain theranostics. Drug Deliv. 2016;23(4):1261–71.PubMedCrossRefGoogle Scholar
  79. 79.
    Yu X, Feng L, Liu D, Zhang L, Wu B, Jiang W, Han Z, Cheng S. Quantitative proteomics reveals the novel co-expression signatures in early brain development for prognosis of glioblastoma multiforme. Oncotarget. 2016;7(12):14161.PubMedPubMedCentralGoogle Scholar
  80. 80.
    Mukherjee A. A review on liposomes and polymeric nanoparticles as drug delivery vehicles to the brain. J Mole Biol Tech. 2017;1(1):1–5.Google Scholar
  81. 81.
    Qin LI, Wang CZ, Fan HJ, Zhang CJ, Zhang HW, Lv MH, Cui SD. A dual--targeting liposome conjugated with transferrin and arginine-glycine-aspartic acid peptide for glioma-targeting therapy. Oncol Lett. 2014;8(5):2000–6.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Zhai G, Wu J, Yu B, Guo C, Yang X, Lee RJ. A transferrin receptor-targeted liposomal formulation for docetaxel. J Nanosci Nanotechnol. 2010;10(8):5129–36.PubMedCrossRefGoogle Scholar
  83. 83.
    Iinuma H, Maruyama K, Okinaga K, Sasaki K, Sekine T, Ishida O, Ogiwara N, Johkura K, Yonemura Y. Intracellular targeting therapy of cisplatin-encapsulated transferrin-polyethylene glycol liposome on peritoneal dissemination of gastric cancer. Int J Cancer. 2002;99(1):130–7.PubMedCrossRefGoogle Scholar
  84. 84.
    Jhaveri A, Deshpande P, Pattni B, Torchilin V. Transferrin-targeted, resveratrol-loaded liposomes for the treatment of glioblastoma. J Control Release. 2018;277:89–101.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Gaspar MM, Radomska A, Gobbo OL, Bakowsky U, Radomski MW, Ehrhardt C. Targeted delivery of transferrin-conjugated liposomes to an orthotopic model of lung cancer in nude rats. J Aerosol Med Pulm Drug Deliv. 2012;25(6):310–8.PubMedCrossRefGoogle Scholar
  86. 86.
    Yang X, Yang S, Chai H, Yang Z, Lee RJ, Liao W, Teng L. A novel isoquinoline derivative anticancer agent and its targeted delivery to tumor cells using transferrin-conjugated liposomes. PLoS One. 2015;10(8):e0136649.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Mendonça LS, Firmino F, Moreira JN, Pedroso de Lima MC, Simões S. Transferrin receptor-targeted liposomes encapsulating anti-BCR-ABL siRNA or asODN for chronic myeloid leukemia treatment. Bioconjug Chem. 2009;21(1):157–68.CrossRefGoogle Scholar
  88. 88.
    Lv Q, Li LM, Han M, Tang XJ, Yao JN, Ying XY, Li FZ, Gao JQ. Characteristics of sequential targeting of brain glioma for transferrin-modified cisplatin liposome. Int J Pharm. 2013;444(1–2):1–9.CrossRefGoogle Scholar
  89. 89.
    Savage DF, Egea PF, Robles-Colmenares Y, O’Connell JD III, Stroud RM. Architecture and selectivity in aquaporins: 2.5 Å X-ray structure of aquaporin Z. PLoS Biol. 2003;1(3):e72.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Li X, Ding L, Xu Y, Wang Y, Ping Q. Targeted delivery of doxorubicin using stealth liposomes modified with transferrin. Int J Pharm. 2009;373(1–2):116–23.PubMedCrossRefGoogle Scholar
  91. 91.
    Ishida O, Maruyama K, Tanahashi H, Iwatsuru M, Sasaki K, Eriguchi M, Yanagie H. Liposomes bearing polyethyleneglycol-coupled transferrin with intracellular targeting property to the solid tumors in vivo. Pharm Res. 2001;18(7):1042–8.PubMedCrossRefGoogle Scholar
  92. 92.
    Chiu SJ, Liu S, Perrotti D, Marcucci G, Lee RJ. Efficient delivery of a Bcl-2-specific antisense oligodeoxyribonucleotide (G3139) via transferrin receptor-targeted liposomes. J Control Release. 2006;112(2):199–207.PubMedCrossRefGoogle Scholar
  93. 93.
    Song XL, Liu S, Jiang Y, Gu LY, Xiao Y, Wang X, Cheng L, Li XT. Targeting vincristine plus tetrandrine liposomes modified with DSPE-PEG2000-transferrin in treatment of brain glioma. Eur J Pharm Sci. 2017;96:129–40.CrossRefGoogle Scholar
  94. 94.
    Sahoo SK, Ma W, Labhasetwar V. Efficacy of transferrin-conjugated paclitaxel-loaded nanoparticles in a murine model of prostate cancer. Int J Cancer. 2004;112(2):335–40.PubMedCrossRefGoogle Scholar
  95. 95.
    Guo Y, Wang L, Lv P, Zhang P. Transferrin-conjugated doxorubicin-loaded lipid-coated nanoparticles for the targeting and therapy of lung cancer. Oncol Lett. 2015;9(3):1065–72.PubMedCrossRefGoogle Scholar
  96. 96.
    Ruttala HB, Ramasamy T, Poudal BK, Choi Y, Choi JY, Kim J, Ku SK, Choi HG, Yong CS, Kim JO. Molecularly targeted co-delivery of a histone deacetylase inhibitor and paclitaxel by lipid-protein hybrid nanoparticles for synergistic combinational chemotherapy. Oncotarget. 2017;8(9):14925–40.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Jeong YI, Kim YW, Jung S, Pei J, Wen M, Li SY, Ryu HH, Lim JC, Jang WY, Kim IY, Moon KS. Delivery of transferrin-conjugated polysaccharide nanoparticles in 9L gliosacoma cells. J Nanosci Nanotechnol. 2015;15(1):125–9.PubMedCrossRefGoogle Scholar
  98. 98.
    Kim SS, Rait A, Rubab F, Rao AK, Kiritsy MC, Pirollo KF, Wang S, Weiner LM, Chang EH. The clinical potential of targeted nanomedicine: delivering to cancer stem-like cells. Mol Ther. 2014;22(2):278–91.PubMedCrossRefGoogle Scholar
  99. 99.
    Lopes AM, Chen KY, Kamei DT. A transferrin variant as the targeting ligand for polymeric nanoparticles incorporated in 3-D PLGA porous scaffolds. Mater Sci Eng C. 2017;73:373–80.CrossRefGoogle Scholar
  100. 100.
    Ding W, Guo L. Immobilized transferrin Fe3O4@ SiO2 nanoparticle with high doxorubicin loading for dual-targeted tumor drug delivery. Int J Nanomedicine. 2013;8:4631–9.PubMedPubMedCentralGoogle Scholar
  101. 101.
    He YJ, Xing L, Cui PF, Zhang JL, Zhu Y, Qiao JB, Lyu JY, Zhang M, Luo CQ, Zhou YX, Lu N. Transferrin-inspired vehicles based on pH-responsive coordination bond to combat multidrug-resistant breast cancer. Biomaterials. 2017;113:266–78.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Ramalho MJ, Sevin E, Gosselet F, Lima J, Coelho MA, Loureiro JA, Pereira MC. Receptor-mediated PLGA nanoparticles for glioblastoma multiforme treatment. Int J Pharm. 2018;545(1–2):84–92.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Daniels TR, Delgado T, Helguera G, Penichet ML. The transferrin receptor part II: targeted delivery of therapeutic agents into cancer cells. Clin Immunol. 2006;121(2):159–76.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Yang Z, Sun N, Cheng R, Zhao C, Liu Z, Li X, Liu J, Tian Z. pH multistage responsive micellar system with charge-switch and PEG layer detachment for co-delivery of paclitaxel and curcumin to synergistically eliminate breast cancer stem cells. Biomaterials. 2017;147:53–67.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Abouzeid AH, Patel NR, Sarisozen C, Torchilin VP. Transferrin-targeted polymeric micelles co-loaded with curcumin and paclitaxel: efficient killing of paclitaxel-resistant cancer cells. Pharm Res. 2014;31(8):1938–45.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Sawant RR, Jhaveri AM, Koshkaryev A, Zhu L, Qureshi F, Torchilin VP. Targeted transferrin-modified polymeric micelles: enhanced efficacy in vitro and in vivo in ovarian carcinoma. Molecular pharmaceutics. 2013;11(2):375–81.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Singh RP, Sharma G, Agrawal P, Pandey BL, Koch B, Muthu MS. Transferrin receptor targeted PLA-TPGS micelles improved efficacy and safety in docetaxel delivery. Int J Biol Macromol. 2016;83:335–44.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Zou W, Sarisozen C, Torchilin VP. The reversal of multidrug resistance in ovarian carcinoma cells by co-application of tariquidar and paclitaxel in transferrin-targeted polymeric micelles. J Drug Target. 2017;25(3):225–34.PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Naseri N, Valizadeh H, Zakeri-Milani P. Solid lipid nanoparticles and nanostructured lipid carriers: structure, preparation and application. Adv Pharmaceut Bull. 2015;5(3):305–13.CrossRefGoogle Scholar
  110. 110.
    Dolatabadi JE, Valizadeh H, Hamishehkar H. Solid lipid nanoparticles as efficient drug and gene delivery systems: recent breakthroughs. Adv Pharmaceut Bull. 2015;5(2):151–9.CrossRefGoogle Scholar
  111. 111.
    Han Y, Zhang Y, Li D, Chen Y, Sun J, Kong F. Transferrin-modified nanostructured lipid carriers as multifunctional nanomedicine for codelivery of DNA and doxorubicin. Int J Nanomedicine. 2014;9:4107–16.PubMedPubMedCentralGoogle Scholar
  112. 112.
    Mulik RS, Mönkkönen J, Juvonen RO, Mahadik KR, Paradkar AR. Apoptosis-induced anticancer effect of transferrin-conjugated solid lipid nanoparticles of curcumin. Cancer Nanotechnol. 2012;3(1):65–81.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Han Y, Zhang P, Chen Y, Sun J, Kong F. Co-delivery of plasmid DNA and doxorubicin by solid lipid nanoparticles for lung cancer therapy. Int J Mol Med. 2014;34(1):191–6.PubMedCrossRefGoogle Scholar
  114. 114.
    Khajavinia A, Varshosaz J, Dehkordi AJ. Targeting etoposide to acute myelogenous leukaemia cells using nanostructured lipid carriers coated with transferrin. Nanotechnology. 2012;23(40):405101.PubMedCrossRefGoogle Scholar
  115. 115.
    Emami J, Yousefian H, Sadeghi H. Targeted nanostructured lipid carrier for brain delivery of artemisinin: design, preparation, characterization, optimization and cell toxicity. J Pharm Pharmaceut Sci: Publ Canadian Soc Pharmaceut Sci, Societe canadienne des sciences pharmaceutiques. 2018;21(1s):225s–41s.CrossRefGoogle Scholar
  116. 116.
    Koppu S, Oh YJ, Edrada-Ebel R, Blatchford DR, Tetley L, Tate RJ, Dufès C. Tumor regression after systemic administration of a novel tumor-targeted gene delivery system carrying a therapeutic plasmid DNA. J Control Release. 2010;143(2):215–21.PubMedCrossRefGoogle Scholar
  117. 117.
    Braslawsky GR, Kadow K, Knipe J, McGoff K, Edson M, Kaneko T, Greenfield RS. Adriamycin (hydrazone)-antibody conjugates require internalization and intracellular acid hydrolysis for antitumor activity. Cancer Immunol Immunother. 1991;33(6):367–74.PubMedCrossRefGoogle Scholar
  118. 118.
    Suzuki S, Inoue K, Hongoh A, Hashimoto Y, Yamazoe Y. Modulation of doxorubicin resistance in a doxorubicin-resistant human leukaemia cell by an immunoliposome targeting transferring receptor. Br J Cancer. 1997;76(1):83.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Sugyo A, Tsuji AB, Sudo H, Okada M, Koizumi M, Satoh H, Kurosawa G, Kurosawa Y, Saga T. Evaluation of efficacy of radioimmunotherapy with 90Y-labeled fully human anti-transferrin receptor monoclonal antibody in pancreatic cancer mouse models. PLoS One. 2015;10(4):e0123761.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Batra JK, Fitzgerald DJ, Chaudhary VK, Pastan I. Single-chain immunotoxins directed at the human transferrin receptor containing Pseudomonas exotoxin A or diphtheria toxin: anti-TFR (Fv)-PE40 and DT388-anti-TFR (Fv). Mol Cell Biol. 1991;11(4):2200–5.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Xu L, Huang CC, Huang W, Tang WH, Rait A, Yin YZ, Cruz I, Xiang LM, Pirollo KF, Chang EH. Systemic tumor-targeted gene delivery by anti-transferrin receptor scFv-immunoliposomes 1. Mol Cancer Ther. 2002;1(5):337–46.PubMedGoogle Scholar
  122. 122.
    Kelkar SS, Reineke TM. Theranostics: combining imaging and therapy. Bioconjug Chem. 2011;22(10):1879–903.PubMedCrossRefGoogle Scholar
  123. 123.
    Wang K, Zhang Y, Wang J, Yuan A, Sun M, Wu J, Hu Y. Self-assembled IR780-loaded transferrin nanoparticles as an imaging, targeting and PDT/PTT agent for cancer therapy. Sci Rep. 2016;6:27421.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Hou L, Shan X, Hao L, Feng Q, Zhang Z. Copper sulfide nanoparticle-based localized drug delivery system as an effective cancer synergistic treatment and theranostic platform. Acta Biomater. 2017;54:307–20.PubMedCrossRefGoogle Scholar
  125. 125.
    Zhang H, Patel N, Ding S, Xiong J, Wu P. Theranostics for hepatocellular carcinoma with Fe 3 O 4@ ZnO nanocomposites. Biomater Sci. 2016;4(2):288–98.PubMedCrossRefGoogle Scholar
  126. 126.
    Goswami U, Dutta A, Raza A, Kandimalla R, Kalita S, Ghosh SS, Chattopadhyay A. Transferrin–copper nanocluster–doxorubicin nanoparticles as targeted theranostic cancer Nanodrug. ACS Appl Mater Interfaces. 2018;10(4):3282–94.PubMedCrossRefGoogle Scholar
  127. 127. Home – [online]. 2019. Available at: Accessed 16 Jun 2019.
  128. 128.
    Alexander-Bryant AA, Berg-Foels WS, Wen X. Bioengineering strategies for designing targeted cancer therapies. Adv Cancer Res. 2013;118:1–59. Academic Press.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2019

Authors and Affiliations

  • Harsh A. Joshi
    • 1
  • Esha S. Attar
    • 1
  • Prajakta Dandekar
    • 2
  • Padma V. Devarajan
    • 2
    Email author
  1. 1.Department of Pharmaceutical Sciences & TechnologyInstitute of Chemical TechnologyMatunga, MumbaiIndia
  2. 2.Department of Pharmaceutical SciencesInsitute of Chemical Technology, Deemed University, Elite Status and Centre of Excellence, Government of MaharashtraMumbaiIndia

Personalised recommendations