Advertisement

A Rating Tool for the Automated Selection of Software Refactorings that Remove Antipatterns to Improve Performance and Stability

  • Nikolai Moesus
  • Matthias Scholze
  • Sebastian Schlesinger
  • Paula HerberEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1077)

Abstract

Antipatterns are known to be bad solutions for recurring design problems. To detect and remove antipatterns has proven to be a useful mean to improve the quality of software. While there exist several approaches to detect antipatterns automatically, existing work on antipattern detection often does not solve the detected design problems automatically. Although there exist refactorings that have the potential to significantly increase the quality of a program, it is hard to decide which refactorings effectively yield improvements with respect to performance and stability. In this paper, we present a rating tool that makes use of static antipattern detection together with software profiling for the automated selection of refactorings that remove antipatterns and are promising candidates to improve performance and stability. Our key idea is to extend a previously proposed heuristics that utilizes software properties determined by both static code analyses and dynamic software analyses to compile a list of concrete refactorings sorted by their assessed potential to improve performance with an approach to identify refactorings that may improve stability. We do not impose an order on the refactorings that may improve stability. We demonstrate the practical applicability of our overall approach with experimental results.

Keywords

Software refactoring Performance Stability antipattern detection 

References

  1. 1.
    Arcelli, D., Berardinelli, L., Trubiani, C.: Performance antipattern detection through fUML model library. In: Proceedings of the 2015 Workshop on Challenges in Performance Methods for Software Development, pp. 23–28. ACM (2015)Google Scholar
  2. 2.
    Arcelli, D., Cortellessa, V., Trubiani, C.: Antipattern-based model refactoring for software performance improvement. In: Proceedings of the 8th international ACM SIGSOFT conference on Quality of Software Architectures, pp. 33–42. ACM (2012)Google Scholar
  3. 3.
    Becker, S., Koziolek, H., Reussner, R.: The Palladio component model for model-driven performance prediction. J. Syst. Softw. 82(1), 3–22 (2009)CrossRefGoogle Scholar
  4. 4.
    Bernardi, M.L., Cimitile, M., Di Lucca, G.A.: A model-driven graph-matching approach for design pattern detection. In: 2013 20th Working Conference on Reverse Engineering (WCRE), pp. 172–181. IEEE (2013)Google Scholar
  5. 5.
  6. 6.
    Copeland, T., Le Vourch, X.: PMD (2017). https://pmd.github.io/
  7. 7.
    Cortellessa, V., Martens, A., Reussner, R., Trubiani, C.: A process to effectively identify “Guilty” performance antipatterns. In: Rosenblum, D.S., Taentzer, G. (eds.) FASE 2010. LNCS, vol. 6013, pp. 368–382. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-12029-9_26CrossRefGoogle Scholar
  8. 8.
    Djoudi, L., Barthou, D., Carribault, P., Lemuet, C., Acquaviva, J.T., Jalby, W.: Exploring application performance: a new tool for a static/dynamic approach. In: Proceedings of the 6th LACSI Symposium. Los Alamos Computer Science Institute (2005)Google Scholar
  9. 9.
    Dynatrace: Dynatrace AppMon (2017). https://www.dynatrace.com/
  10. 10.
    Fayad, M.E., Altman, A.: Thinking objectively: an introduction to software stability. Commun. ACM 44(9), 95 (2001)CrossRefGoogle Scholar
  11. 11.
    Fontana, F.A., Zanoni, M.: Code smell severity classification using machine learning techniques. Knowl.-Based Syst. 128, 43–58 (2017)CrossRefGoogle Scholar
  12. 12.
    Foundation, A.S.: Apache Tomcat (2017). http://tomcat.apache.org/
  13. 13.
    Fowler, M., Beck, K.: Refactoring: Improving the Design of Existing Code. Addison-Wesley Professional, Massachusetts (1999)Google Scholar
  14. 14.
    Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable Object-oriented Software. Addison-Wesley Longman Publishing Co. Inc, Boston (1995)zbMATHGoogle Scholar
  15. 15.
    Goetz, B.: Anatomy of a flawed microbenchmark (2005). https://www.ibm.com/developerworks/java/library/j-jtp02225/
  16. 16.
    Grabner, A.: Performance analysis: how to identify synchronization issues under load? (2009). https://www.dynatrace.com/blog/performance-analysis-how-to-identify-synchronization-issues-under-load/
  17. 17.
    Herber, P., Fellmuth, J., Glesner, S.: Model checking SystemC designs using timed automata. In: International Conference on Hardware/Software Codesign and Integrated System Synthesis (CODES+ISSS), pp. 131–136. ACM press (2008)Google Scholar
  18. 18.
    Herber, P., Glesner, S.: A HW/SW co-verification framework for SystemC. ACM Trans. Embed. Comput. Syst. 12, 61 (2013)CrossRefGoogle Scholar
  19. 19.
    Herber, P., Pockrandt, M., Glesner, S.: STATE-A SystemC to timed automata transformation engine. In: 2015 IEEE 7th International Symposium on Cyberspace Safety and Security (CSS), 2015 IEEE 12th International Conference on Embedded Software and Systems (ICESS), 2015 IEEE 17th International Conference on High Performance Computing and Communications (HPCC), pp. 1074–1077. IEEE (2015)Google Scholar
  20. 20.
    Heuzeroth, D., Holl, T., Hogstrom, G., Lowe, W.: Automatic design pattern detection. In: 2003 11th IEEE International Workshop on Program Comprehension, pp. 94–103. IEEE (2003)Google Scholar
  21. 21.
    Long, J.: Software reuse antipatterns. ACM SIGSOFT Softw. Eng. Notes 26(4), 68–76 (2001)CrossRefGoogle Scholar
  22. 22.
    Louridas, P.: Static code analysis. IEEE Softw. 23(4), 58–61 (2006)CrossRefGoogle Scholar
  23. 23.
    Luo, Q., Nair, A., Grechanik, M., Poshyvanyk, D.: Forepost: finding performance problems automatically with feedback-directed learning software testing. Empir. Softw. Eng. 22(1), 6–56 (2017)CrossRefGoogle Scholar
  24. 24.
    Lyu, M.R.: Software reliability engineering: a roadmap. In: 2007 Future of Software Engineering, pp. 153–170. IEEE Computer Society (2007)Google Scholar
  25. 25.
    Moesus, N., Scholze, M., Schlesinger, S., Herber, P.: Automated selection of software refactorings that improve performance. In: Proceedings of the 13th International Conference on Software Technologies, ICSOFT 2018, Porto, Portugal, 26–28 July 2018, pp. 67–78 (2018)Google Scholar
  26. 26.
    Owen, K.: Improve the smell of your code with microrefactorings (2016). https://www.sitepoint.com/improve-the-smell-of-your-code-with-microrefactorings/
  27. 27.
  28. 28.
    Pugh, B., Hovemeyer, D.: FindBugs (2015). http://findbugs.sourceforge.net/
  29. 29.
    Rasool, G., Streitfdert, D.: A survey on design pattern recovery techniques. IJCSI Int. J. Comput. Sci. Issues 8(2), 251–260 (2011)Google Scholar
  30. 30.
    Reitbauer, A., Grabner, A., Kopp, M.: Java Enterprise Performance: [Performance und Skalierbarkeit von Java-Enterprise-Anwendungen verstehen und managen]. Press, Entwickler (2011)Google Scholar
  31. 31.
    Rutter, T.: Stable vs stable: what ‘stable’ means in software (2010). https://bitdepth.thomasrutter.com/2010/04/02/stable-vs-stable-what-stable-means-in-software/
  32. 32.
    Smith, C.U., Williams, L.G.: New software performance antipatterns: more ways to shoot yourself in the foot. In: International CMG Conference, pp. 667–674 (2002)Google Scholar
  33. 33.
    Tsantalis, N., Chatzigeorgiou, A., Stephanides, G., Halkidis, S.T.: Design pattern detection using similarity scoring. IEEE Trans. Softw. Eng. 32(11), 896–909 (2006)CrossRefGoogle Scholar
  34. 34.
    Washizaki, H., Fukaya, K., Kubo, A., Fukazawa, Y.: Detecting design patterns using source code of before applying design patterns. In: 2009 Eighth IEEE/ACIS International Conference on Computer and Information Science, ICIS 2009, pp. 933–938. IEEE (2009)Google Scholar
  35. 35.
    Wendehals, L.: Improving design pattern instance recognition by dynamic analysis. In: Proceedings of the ICSE 2003 Workshop on Dynamic Analysis (WODA), Portland, USA, pp. 29–32 (2003)Google Scholar
  36. 36.
    Wierda, A., Dortmans, E., Somers, L.J.: Detecting patterns in object-oriented source code - a case study. In: ICSOFT (SE). pp. 13–24. INSTICC Press (2007)Google Scholar
  37. 37.
    Woodside, M., Franks, G., Petriu, D.C.: The future of software performance engineering. In: 2007 Future of Software Engineering, FOSE 2007, pp. 171–187. IEEE (2007)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Nikolai Moesus
    • 1
  • Matthias Scholze
    • 1
  • Sebastian Schlesinger
    • 2
  • Paula Herber
    • 3
    Email author
  1. 1.QMETHODS – Business & IT Consulting GmbHBerlinGermany
  2. 2.Software and Embedded Systems EngineeringTechnische Universität BerlinBerlinGermany
  3. 3.Embedded Systems GroupUniversity of MünsterMünsterGermany

Personalised recommendations