Advertisement

Simulation in the Design of Machine Tools

  • Daniel SpeschaEmail author
  • Sascha Weikert
  • Konrad Wegener
Chapter

Abstract

A framework of methods for efficient and accurate simulation of the dynamics of machine tools including control is presented. The major achievements are a model order reduction technique with pre-definable error bound and a method for modelling of moving interfaces on flexible bodies based on trigonometric interpolation of the desired force distribution. The software tool MORe (Model Order Reduction and more) that implements these methods is presented. Application examples on analyses of dynamic and static properties are presented and simulation results are compared with measurements. The very good validation results confirm the usability of the presented methods and software for real-world applications.

References

  1. 1.
    Altintas, Y., Brecher, C., Weck, M., & Witt, S. (2005). Virtual machine tool. CIRP Annals, 54(2), 115–138.CrossRefGoogle Scholar
  2. 2.
    Altintas, Y., Verl, A., Brecher, C., Uriarte, L., & Pritschow, G. (2011). Machine tool feed drives. CIRP Annals, 60(2), 779–796.CrossRefGoogle Scholar
  3. 3.
    Brecher, C., Esser, M., & Witt, S. (2009). Interaction of manufacturing process and machine tool. CIRP Annals, 58(2), 588–607.CrossRefGoogle Scholar
  4. 4.
    Weikert, S. (2000). Beitrag zur Analyse des dynamischen Verhaltens von Werkzeugmaschinen, ETH Zürich.Google Scholar
  5. 5.
    Berkemer, J. (2003). Gekoppelte Simulation von Maschinendynamik und Antriebsregelung unter Verwendung linearer Finite Elemente Modelle. Institut für Statik und Dynamik der Luft- und Raumfahrtkonstruktionen: Universität Stuttgart.Google Scholar
  6. 6.
    Zaeh, M., & Siedl, D. (2007). A new method for simulation of machining performance by integrating finite element and multi-body simulation for machine tools. CIRP Annals, 56(1), 383–386.CrossRefGoogle Scholar
  7. 7.
    Maglie, P. (2011). Parallelization of design and simulation: Virtual machine tools in real product development. Eidgenössische Technische Hochschule ETH Zürich: Institut für Werkzeugmaschinen und Fertigung.Google Scholar
  8. 8.
    Lorenzer, T., Weikert, S., & Wegener, K. (2007). Decision-making aid for the design of reconfigurable machine tools, In Proceedings of 2nd International Conference Changeable, Agile, Reconfigurable& Virtual Production, pp. 720–729.Google Scholar
  9. 9.
    Rudnyi, E. B., & Korvink, J. G. (2006). Model order reduction for large scale engineering models developed in ANSYS. In J. Dongarra, K. Madsen, & J. Waśniewski, (Eds.), Proceedings 7th International WorkshopApplied Parallel Computing. State of the Art in Scientific Computing, (PARA 2004), Revised Selected Papers, (pp. 349–356). Springer.Google Scholar
  10. 10.
    Wabner, M., Frieß, U., Hofmann, S., Hellmich, A., & Quellmalz, J. (2014). Optimierte Inbetriebnahme durch Simulation, wt Werkstattstech. online, 1/2, 97–99.Google Scholar
  11. 11.
    Uhlmann, E., Essmann, J., & Wintering, J.-H. (2012). Design- and control-concept for compliant machine tools based on controller integrated models. CIRP Annals, 61(1), 347–350.CrossRefGoogle Scholar
  12. 12.
    Spescha, D. (2018). Framework for Efficient and Accurate Simulation of the Dynamics of Machine Tools. Faculty of Mathematics/Computer Science and Mechanical Engineering, Clausthal University of Technology.Google Scholar
  13. 13.
    Fehr, J. (2011). Automated and error controlled model reduction in elastic multibody systems. Institut für Technische und Numerische Mechanik: Universität Stuttgart.Google Scholar
  14. 14.
    Grimme, E. J. (1997). Krylov projection methods for model reduction. University of Illinois at Urbana-Champaign.Google Scholar
  15. 15.
    Bechtold, T., Rudnyi, E. B., & Korvink, J. G. (2004). Error estimation for Arnoldi-based model order reduction of MEMS. System, 10, 15.Google Scholar
  16. 16.
    Bonin, T., Faßbender, H., Soppa, A., & Zaeh, M. (2016). A fully adaptive rational global Arnoldi method for the model-order reduction of second-order MIMO systems with proportional damping. Mathematics & Computing in Simulation, 122, 1–19.MathSciNetCrossRefGoogle Scholar
  17. 17.
    Spescha, D., Weikert, S., Retka, S., & Wegener, K. (2018). Krylov and modal subspace based model order reduction with A-priori error estimation. ETH Zurich Research Collection @ www.research-collection.ethz.ch/bitstream/handle/20.500.11850/284435/20180824_modelreduction.pdf?sequence=1. Accessed May 21, 2019.
  18. 18.
    Spescha, D., Weikert. S., & Wegener, K. (2018). Modelling of moving interfaces for reduced-order finite element models using trigonometric interpolation, ETH Zurich Research Collection @ www.research-collection.ethz.ch/bitstream/handle/20.500.11850/284509/1/20180824_moving_interfaces.pdf. Accessed May 21, 2019.
  19. 19.
    inspire AG. (2019). MORe @ www.more-simulations.ch/index.php/contact/. Accessed May 21, 2019.
  20. 20.
    Lanz, N., Spescha, D., Weikert, S., & Wegener, K. (2018). Efficient static and dynamic modelling of machine structures with large linear motions. International Journal of Automation Technology, 12(5), 622–630.CrossRefGoogle Scholar
  21. 21.
    Kuffa, M. (2017). High performance dry grinding. HPDG, ETH Zurich.Google Scholar
  22. 22.
    Ibaraki, S., & Knapp, W. (2012). Indirect measurement of volumetric accuracy for three-axis and five-axis machine tools. A Review, International Journal of Automation Technology, 6(2), 110–124.Google Scholar
  23. 23.
    Hernández, P., Zimmermann, N., Pavlicek, F., Blaser, P., Knapp, W., Mayr, J., & Wegener, K. (2018). Learning efficient modelling and compensation for thermal behaviour of machine tools. MTTRF 2018 Annual Meeting.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Daniel Spescha
    • 1
    Email author
  • Sascha Weikert
    • 1
  • Konrad Wegener
    • 2
  1. 1.Inspire AGZurichSwitzerland
  2. 2.ETH ZürichZurichSwitzerland

Personalised recommendations