Simplified Manufacturing of Machine Tools Utilising Mechatronic Solutions on the Example of the Experimental Machine MAX

  • Steffen IhlenfeldtEmail author
  • Jens Müller
  • Marcel Merx
  • Matthias Kraft
  • Christoph Peukert


This chapter presents a mechatronic system concept for highly productive and accurate machine tools. Using the example of an experimental machine called ‘MAX’, it will be demonstrated that the working precision of a machine can be increased whilst the effort required for machining and assembly of its mechanical components is kept to a minimum. Firstly, a novel machine structure is introduced, which allows a high reproducibility with low manufacturing effort and provides the necessary degrees of freedom for the correction of motion deviations as well as the additional actuators required for the compensation of dynamic excitations. The simplified requirements for production and assembly of the machine presented leads inevitably to large geometric and kinematic errors. These errors are modelled using rigid-body kinematics. Circularity tests and angular measurements are performed to verify the machine’s ability to correct its geometric-kinematic deviations. For a highly dynamic engraving process, the reduction of the dynamic excitation caused by the drive reaction forces is demonstrated using the principle of impulse compensation. Finally, an approach to the correction of elastic and thermo-elastic errors and the comprehensive modelling and simulation-based analysis of the experimental machine are outlined.



The presented work was funded by the German Research Foundation (DFG) within the projects GR1458/48-3 “Basic investigations on the application of the pulse compensation for linear direct drives in a cross-slide”, GR1458/64-1 “Application potential of articulated coupled drive and guide elements for increase of movement dynamics and accuracy” and the subproject C06 in the Collaborative Research Centre SFB/Transregio 96 “Thermo-energetic Design of Machine Tools”. The authors gratefully thank the DFG for their generous support. Additional thanks go to Maria Kopp, Evi Karola Wörner, Maria Meier, Jessica Deutsch, Bertram Friedrich, Mingliang Yang, Ziyi Wang, Axel Fickert, Felix Bender, Ulysse Delplanque, Jiajun Ruan, Daniel Sandoval Ovalle, Xaver Thiem, Enrico Henschel, Sven Kung, Bin Zhou, Luca Di Giorgio, Simon Städtler and Holger Kretzschmar who supported us in developing the models, designing of components and performing experiments.

The chapter is dedicated to Prof. Dr.-Ing. habil. Knut Großmann, who developed the idea for the design concept.


  1. 1.
    Hiramoto, K., Hansel, A., Ding, S., & Yamazaki, K. (2005). A Study on the drive at center of gravity (DCG) feed principle and Its application for development of high performance machine tool systems. CIRP Annals, 54(1), 333–336.CrossRefGoogle Scholar
  2. 2.
    Ihlenfeldt, S., Müller, J., Peukert, C., & Merx, M. (2016). Kinematically coupled force compensation — design principle and control concept for highly-dynamic machine tools. Procedia CIRP, 46, 189–192.CrossRefGoogle Scholar
  3. 3.
    Hollis, R. L., Jr. (1993). Ultrafast Electro-Dynamic X, Y and Theta Positioning Stage. European patent specification EP0523042B1.Google Scholar
  4. 4.
    Großmann, K., Müller, J., Jungnickel, G., & Mühl, A. (2006). Impulskompensation. German patent DE 10 2004 057 062 B4.Google Scholar
  5. 5.
    Brecher, C., Wenzel, C., & Klar, R. (2008). Characterization and optimization of the dynamic tool path of a highly dynamic micromilling machine CIRP. Journal of Manufacturing Science & Technology, 1(2), 86–91.CrossRefGoogle Scholar
  6. 6.
    Müller, J., Junker, T., Pagel, K., Großmann, K., & Drossel, W. -G. (2013). Impulsentkopplung von Lineardirektantrieben, wt Werkstattstechnik online, 103(5), 370–376.Google Scholar
  7. 7.
    Bubak, A., Soucek, P., & Zelený, J. (2003). New principles for the design of highly dynamic machine tools. In Proceedings of the 17th International Conference on Production Research ICPR-17 (pp. 1–10). Blacksburg.Google Scholar
  8. 8.
    Großmann, K., Müller, J., Merx, M., & Peukert, C. (2014). Reduktion antriebsverursachter Schwingungen. Antriebstechnik/Ant Journal, 53(4), 35–42.Google Scholar
  9. 9.
    Kroll, L., Blau, P., Wabner, M., Frieß, U., Eulitz, J., & Klärner, M. (2011). Lightweight components for energy-efficient machine tools. CIRP Journal of Manufacturing Science & Technology, 4(2), 148–160.CrossRefGoogle Scholar
  10. 10.
    Möhring, H.-C., Brecher, C., Abele, E., Fleischer, J., & Bleicher, F. (2015). Materials in machine tool structures. CIRP Annals, 64(2), 725–748.CrossRefGoogle Scholar
  11. 11.
    Zulaika, J., & Campa, F. J. (2009). New concepts for structural components. In N. Lopez de Lacalle & A. Lamkiz Mentxaka (Eds.), Machine tools for high performance machining. Springer.Google Scholar
  12. 12.
    Großmann, K. (Ed.) (2014). Thermo-energetic design of machine tools. Springer.Google Scholar
  13. 13.
    Großmann, K., Kauschinger, B., & Szatmári, S. (2008). Kinematic calibration of a hexapod of simple design. Production Engineering Research & Development, 2, 317–325.CrossRefGoogle Scholar
  14. 14.
    Kauschinger, B. (2006). Verbesserung der Bewegungsgenauigkeit an einem Hexapod einfacher Bauart, Dissertation, Technische Universität Dresden, Germany.Google Scholar
  15. 15.
    Beitelschmidt, M., Galant, A., Großmann, K., & Kauschinger, B. (2015). Innovative simulation technology for real-time calculation of the thermo-elastic behaviour of machine tools in motion. Applied Mechanics & Materials, 794, 363–370.CrossRefGoogle Scholar
  16. 16.
    Weber, J., Weber, J., Shabi, L., & Lohse, H. (2016). Energy, Power and heat flow of the cooling and fluid systems in a cutting machine tool. Procedia CIRP, 46, 99–102.CrossRefGoogle Scholar
  17. 17.
    Schwenke, H., Knapp, W., Haitjema, H., Weckenmann, A., Schmitt, R., & Delbressine, F. (2008). Geometric error measurement and compensation of machines—An update. CIRP Annals, 57(2), 660–675.CrossRefGoogle Scholar
  18. 18.
    Zhang, J., Li, B., Zhou, C., & Zhao, W. (2016). Positioning error prediction and compensation of ball screw feed drive system with different mounting conditions. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 230(12), 2307–2311.CrossRefGoogle Scholar
  19. 19.
    Brecher, C., Baumler, S., & Brockmann, B. (2013). Avoiding chatter by means of active damping systems for machine tools. Journal of Machine Engineering, 13(3), 117–128.Google Scholar
  20. 20.
    Großmann, K., Möbius, V., Höfer, H., Müller, J., & Kauschinger, B. (2009). German patent DE 10 2009 057 207 A1.Google Scholar
  21. 21.
    Peukert, C., Merx, M., Müller, J., Kraft, M., & Ihlenfeldt, S. (2017). Parallel-driven feed axes with compliant mechanisms to increase dynamics and accuracy of motion. In R. Schmidt, G. Schuh (Eds.), Proceedings of the 7th WGP-Jahreskongress (pp. 417–424). Aachen: Apprimus.Google Scholar
  22. 22.
    Peukert, C., Merx, M., Müller, J., & Ihlenfeldt, S. (2017). Flexible coupling of drive and guide elements for parallel-driven feed axes to increase dynamics and accuracy of motion. Journal of Machine Engineering, 17(2), 77–89.Google Scholar
  23. 23.
    Ihlenfeldt, S., Müller, J., Merx, M., & Peukert, C. (2018) A novel concept for highly dynamic over-actuated lightweight machine tools. In X. Yan, D. Bradley, P. Moore (Eds.). Reinventing Mechatronics: Proceedings of Mechatronics 2018 (pp. 210–216). Glasgow.Google Scholar
  24. 24.
    Peukert, C., Müller, J., Merx, M., Galant, A., Fickert, A., Zhou, B., Städtler, S., Ihlenfeldt, S., & Beitelschmidt, M. (2018) Efficient FE-modelling of the thermo-elastic behaviour of a machine tool slide in lightweight design. In Proceedings of the 1st Conference on Thermal Issues in Machine Tools. Dresden.Google Scholar
  25. 25.
    Friedrich, C., Kauschinger, B., & Ihlenfeldt, S. (2016). Decentralized structure-integrated spatial force measurement in machine tools. Mechatronics, 40, 17–27.CrossRefGoogle Scholar
  26. 26.
    Sartori, S., & Zhang, G. X. (1995). Geometric error measurement and compensation of machines. CIRP Annals, 44(2), 599–609.CrossRefGoogle Scholar
  27. 27.
    Weck, M., & Brecher, C. (2006). Werkzeugmaschinen 5—Messtechnische Untersuchung und Beurteilung, dynamische Stabilität (7th edn., pp. 80–87). Springer.Google Scholar
  28. 28.
    International Standards Organization. (2012). ISO 230-1:2012(E), Test code for machine tools—Part 1: Geometric accuracy of machines operating under no-load or quasi-static conditions @ Accessed May 21, 2019.
  29. 29.
    Siciliano, B., & Khatib, O. (2016). Handbook of robotics (2nd edn, pp. 16–17). Springer.Google Scholar
  30. 30.
    Turek, P., Jedrzejewski, J., & Mordzycki, W. (2010). Methods of machine tool error compensation. Journal of Machine Engineering, 10(4), 5–25.Google Scholar
  31. 31.
    Automated Precision Inc. (2010). User Manual XD Laser.Google Scholar
  32. 32.
    Majda, P. (2012). Modelling of geometric errors of linear guideway and their influence on joint kinematic error in machine tools. Precision Engineering, 36(3), 369–378.CrossRefGoogle Scholar
  33. 33.
    International Standards Organization. (2005). ISO 230-4:2005(E), Test code for machine tools—Part 4: Circular tests for numerically controlled machine tools @ Access May 21, 2019.
  34. 34.
    Großmann, K., & Müller, J. (2005). Verringerung der Gestellanregung durch Lineardirektantriebe mittels Impulskompensation. ZWF Zeitschrift für wirtschaftlichen Fabrikbetrieb, 100(11), 656–660.CrossRefGoogle Scholar
  35. 35.
    Großmann, K., & Müller, J. (2009). Untersuchungsergebnisse zur Wirksamkeit der Impulskompensation von Lineardirektantrieben. ZWF Zeitschrift für wirtschaftlichen Fabrikbetrieb, 104(9), 761–767.CrossRefGoogle Scholar
  36. 36.
    Müller, J. (2009). Vergleichende Untersuchung von Methoden zur Verringerung der Gestellanregung durch linearmotorgetriebene Werkzeugmaschinenachsen, Dissertation, Technische Universität Dresden, Germany.Google Scholar
  37. 37.
    Großmann, K., Müller, J., & Peukert, C. (2011). Vorab-Sollwertberechnung für die Impulskompensation von Lineardirektantrieben. ZWF Zeitschrift für wirtschaftlichen Fabrikbetrieb, 106(5), 352–355.CrossRefGoogle Scholar
  38. 38.
    Peukert, C., Müller, J., Merx, M., Kung, S., & Großmann, K. (2015). Sollbahnberechnung zur Impulskompensation eines linearmotorgetriebenen Kreuzschlittens. In VDI-Berichte 2268: Antriebssysteme 2015 (pp. 117–132). Düsseldorf: VDI.Google Scholar
  39. 39.
    Peukert, C., Müller, J., & Großmann, K. (2012). Sollbahnberechnung zur Impulskompensation von Lineardirektantrieben. In VDI-Berichte 2175: Bewegungstechnik 2012 (pp. 171–184). Düsseldorf: VDI.Google Scholar
  40. 40.
    Thiem, X., Kauschinger, B., & Ihlenfeldt, S. (2018). Structure model based correction of machine tools. In Proceedings of the 1st Conference on Thermal Issues in Machine Tools. Dresden.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Steffen Ihlenfeldt
    • 1
    Email author
  • Jens Müller
    • 1
  • Marcel Merx
    • 1
  • Matthias Kraft
    • 1
  • Christoph Peukert
    • 1
  1. 1.Technische Universität DresdenDresdenGermany

Personalised recommendations