Immune Responses to Mycobacterium tuberculosis and the Impact of HIV Infection

  • Catherine RiouEmail author
  • Cari Stek
  • Elsa Du Bruyn


Mycobacterium tuberculosis control relies on a well-orchestrated immune response, where a complex array of innate and adaptive immune cells responses act synergistically to restrict Mycobacterium tuberculosis growth. While different immune cell subsets have been associated with protection in experimental models of TB, it is still unclear exactly what type of immune responses are required to confer protection in humans.

People living with HIV are around 20 times more likely to develop active TB. The clearest immune defect caused by HIV is a progressive reduction in absolute CD4 T cell numbers that correlates with increasing risk of active TB. However, shortly after HIV acquisition or when CD4 T cell numbers improve upon HIV treatment, the risk of active TB remains heightened. This indicates that, independently of the overall CD4 T cell depletion, HIV infection also induces qualitative changes weakening protective TB immune responses.

This chapter section covers the human immune response to Mycobacterium tuberculosis and describes the impact of HIV infection.


Mycobacterium tuberculosis HIV Immunology T cells Macrophages Dendritic cells Neutrophils inflammation Cytokines 



This figure was developed by Avuyonke Balfour.


  1. 1.
    Ernst JD (2012) The immunological life cycle of tuberculosis. Nat Rev Immunol 12(8):581–591PubMedCrossRefGoogle Scholar
  2. 2.
    Deeks SG, Tracy R, Douek DC (2013) Systemic effects of inflammation on health during chronic HIV infection. Immunity 39(4):633–645PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Kawai T, Akira S (2011) Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 34(5):637–650PubMedCrossRefGoogle Scholar
  4. 4.
    Pahari S, Kaur G, Aqdas M, Negi S, Chatterjee D, Bashir H et al (2017) Bolstering immunity through pattern recognition receptors: a unique approach to control tuberculosis. Front Immunol 8:906PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Lowe DM, Bandara AK, Packe GE, Barker RD, Wilkinson RJ, Griffiths CJ et al (2013) Neutrophilia independently predicts death in tuberculosis. Eur Respir J 42(6):1752–1757PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Godfrey DI, Uldrich AP, McCluskey J, Rossjohn J, Moody DB (2015) The burgeoning family of unconventional T cells. Nat Immunol 16(11):1114–1123PubMedCrossRefGoogle Scholar
  7. 7.
    Vorkas CK, Wipperman MF, Li K, Bean J, Bhattarai SK, Adamow M et al (2018) Mucosal-associated invariant and gammadelta T cell subsets respond to initial Mycobacterium tuberculosis infection. JCI Insight 3(19).
  8. 8.
    Kee SJ, Kwon YS, Park YW, Cho YN, Lee SJ, Kim TJ et al (2012) Dysfunction of natural killer T cells in patients with active Mycobacterium tuberculosis infection. Infect Immun 80(6):2100–2108PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Behar SM, Divangahi M, Remold HG (2010) Evasion of innate immunity by Mycobacterium tuberculosis: is death an exit strategy? Nat Rev Microbiol 8(9):668–674PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Queval CJ, Brosch R, Simeone R (2017) The macrophage: a disputed fortress in the battle against Mycobacterium tuberculosis. Front Microbiol 8:2284PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Khan N, Vidyarthi A, Javed S, Agrewala JN (2016) Innate immunity holding the flanks until reinforced by adaptive immunity against Mycobacterium tuberculosis infection. Front Microbiol 7:328PubMedPubMedCentralGoogle Scholar
  12. 12.
    Coleman CM, Wu L (2009) HIV interactions with monocytes and dendritic cells: viral latency and reservoirs. Retrovirology 6:51PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Sattentau QJ, Stevenson M (2016) Macrophages and HIV-1: an unhealthy constellation. Cell Host Microbe 19(3):304–310PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Cosgrove C, Ussher JE, Rauch A, Gartner K, Kurioka A, Huhn MH et al (2013) Early and nonreversible decrease of CD161++/MAIT cells in HIV infection. Blood 121(6):951–961PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Kasprowicz VO, Cheng TY, Ndung'u T, Sunpath H, Moody DB, Kasmar AG (2016) HIV disrupts human T cells that target mycobacterial glycolipids. J Infect Dis 213(4):628–633PubMedCrossRefGoogle Scholar
  16. 16.
    Pauza CD, Poonia B, Li H, Cairo C, Chaudhry S (2014) Gammadelta T Cells in HIV disease: past, present, and future. Front Immunol 5:687PubMedGoogle Scholar
  17. 17.
    Juno JA, Phetsouphanh C, Klenerman P, Kent SJ (2019) Perturbation of mucosal-associated invariant T cells and iNKT cells in HIV infection. Curr Opin HIV AIDS 14(2):77–84PubMedCrossRefGoogle Scholar
  18. 18.
    Keane J, Gershon S, Wise RP, Mirabile-Levens E, Kasznica J, Schwieterman WD et al (2001) Tuberculosis associated with infliximab, a tumor necrosis factor alpha-neutralizing agent. N Engl J Med 345(15):1098–1104PubMedCrossRefGoogle Scholar
  19. 19.
    Newport MJ, Huxley CM, Huston S, Hawrylowicz CM, Oostra BA, Williamson R et al (1996) A mutation in the interferon-gamma-receptor gene and susceptibility to mycobacterial infection. N Engl J Med 335(26):1941–1949PubMedCrossRefGoogle Scholar
  20. 20.
    Sakai S, Kauffman KD, Sallin MA, Sharpe AH, Young HA, Ganusov VV et al (2016) CD4 T cell-derived IFN-gamma plays a minimal role in control of pulmonary Mycobacterium tuberculosis infection and must be actively repressed by PD-1 to prevent lethal disease. PLoS Pathog 12(5):e1005667PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Barber DL, Mayer-Barber KD, Feng CG, Sharpe AH, Sher A (2011) CD4 T cells promote rather than control tuberculosis in the absence of PD-1-mediated inhibition. J Immunol 186(3):1598–1607PubMedCrossRefGoogle Scholar
  22. 22.
    Barber DL, Sakai S, Kudchadkar RR, Fling SP, Day TA, Vergara JA et al (2019) Tuberculosis following PD-1 blockade for cancer immunotherapy. Sci Transl Med 11(475):eaat2702PubMedGoogle Scholar
  23. 23.
    Kozakiewicz L, Phuah J, Flynn J, Chan J (2013) The role of B cells and humoral immunity in Mycobacterium tuberculosis infection. Adv Exp Med Biol 783:225–250PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Costello AM, Kumar A, Narayan V, Akbar MS, Ahmed S, Abou-Zeid C et al (1992) Does antibody to mycobacterial antigens, including lipoarabinomannan, limit dissemination in childhood tuberculosis? Trans R Soc Trop Med Hyg 86(6):686–692PubMedCrossRefGoogle Scholar
  25. 25.
    Li H, Wang XX, Wang B, Fu L, Liu G, Lu Y et al (2017) Latently and uninfected healthcare workers exposed to TB make protective antibodies against Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 114(19):5023–5028PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Guadalupe M, Reay E, Sankaran S, Prindiville T, Flamm J, McNeil A et al (2003) Severe CD4+ T-cell depletion in gut lymphoid tissue during primary human immunodeficiency virus type 1 infection and substantial delay in restoration following highly active antiretroviral therapy. J Virol 77(21):11708–11717PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Monteiro P, Gosselin A, Wacleche VS, El-Far M, Said EA, Kared H et al (2011) Memory CCR6+CD4+ T cells are preferential targets for productive HIV type 1 infection regardless of their expression of integrin beta7. J Immunol 186(8):4618–4630PubMedCrossRefGoogle Scholar
  28. 28.
    Brenchley JM, Price DA, Douek DC (2006) HIV disease: fallout from a mucosal catastrophe? Nat Immunol 7(3):235–239PubMedCrossRefGoogle Scholar
  29. 29.
    Corleis B, Bucsan AN, Deruaz M, Vrbanac VD, Lisanti-Park AC, Gates SJ et al (2019) HIV-1 and SIV infection are associated with early loss of lung interstitial CD4+ T cells and dissemination of pulmonary tuberculosis. Cell Rep 26(6):1409–1418. e5PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Sonnenberg P, Glynn JR, Fielding K, Murray J, Godfrey-Faussett P, Shearer S (2005) How soon after infection with HIV does the risk of tuberculosis start to increase? A retrospective cohort study in South African gold miners. J Infect Dis 191(2):150–158PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Geldmacher C, Ngwenyama N, Schuetz A, Petrovas C, Reither K, Heeregrave EJ et al (2010) Preferential infection and depletion of Mycobacterium tuberculosis-specific CD4 T cells after HIV-1 infection. J Exp Med 207(13):2869–2881PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Cattamanchi A, Smith R, Steingart KR, Metcalfe JZ, Date A, Coleman C et al (2011) Interferon-gamma release assays for the diagnosis of latent tuberculosis infection in HIV-infected individuals: a systematic review and meta-analysis. J Acquir Immune Defic Syndr 56(3):230–238PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Bunjun R, Riou C, Soares AP, Thawer N, Muller TL, Kiravu A et al (2017) Effect of HIV on the frequency and number of Mycobacterium tuberculosis-specific CD4+ T cells in blood and airways during latent M. tuberculosis infection. J Infect Dis 216(12):1550–1560PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Neff CP, Chain JL, MaWhinney S, Martin AK, Linderman DJ, Flores SC et al (2015) Lymphocytic alveolitis is associated with the accumulation of functionally impaired HIV-specific T cells in the lung of antiretroviral therapy-naive subjects. Am J Respir Crit Care Med 191(4):464–473PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Day CL, Mkhwanazi N, Reddy S, Mncube Z, van der Stok M, Klenerman P et al (2008) Detection of polyfunctional Mycobacterium tuberculosis-specific T cells and association with viral load in HIV-1-infected persons. J Infect Dis 197(7):990–999PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Bell LC, Pollara G, Pascoe M, Tomlinson GS, Lehloenya RJ, Roe J et al (2016) In vivo molecular dissection of the effects of HIV-1 in active tuberculosis. PLoS Pathog 12(3):e1005469PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Appay V, Kelleher AD (2016) Immune activation and immune aging in HIV infection. Curr Opin HIV AIDS 11(2):242–249PubMedCrossRefGoogle Scholar
  38. 38.
    Flynn JL, Chan J, Lin PL (2011) Macrophages and control of granulomatous inflammation in tuberculosis. Mucosal Immunol 4(3):271–278PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Sasindran SJ, Torrelles JB (2011) Mycobacterium tuberculosis infection and inflammation: what is beneficial for the host and for the bacterium? Front Microbiol 2:2PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Crump JA, Ramadhani HO, Morrissey AB, Saganda W, Mwako MS, Yang LY et al (2012) Bacteremic disseminated tuberculosis in sub-saharan Africa: a prospective cohort study. Clin Infect Dis 55(2):242–250PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Lieberman TD, Wilson D, Misra R, Xiong LL, Moodley P, Cohen T et al (2016) Genomic diversity in autopsy samples reveals within-host dissemination of HIV-associated Mycobacterium tuberculosis. Nat Med 22(12):1470–1474PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Ryndak MB, Singh KK, Peng Z, Zolla-Pazner S, Li H, Meng L et al (2014) Transcriptional profiling of Mycobacterium tuberculosis replicating ex vivo in blood from HIV- and HIV+ subjects. PLoS One 9(4):e94939PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Harding JS, Rayasam A, Schreiber HA, Fabry Z, Sandor M (2015) Mycobacterium-infected dendritic cells disseminate granulomatous inflammation. Sci Rep 5:15248PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Oehlers SH, Cronan MR, Scott NR, Thomas MI, Okuda KS, Walton EM et al (2015) Interception of host angiogenic signalling limits mycobacterial growth. Nature 517(7536):612–615PubMedCrossRefGoogle Scholar
  45. 45.
    Nusbaum RJ, Calderon VE, Huante MB, Sutjita P, Vijayakumar S, Lancaster KL et al (2016) Pulmonary tuberculosis in humanized mice infected with HIV-1. Sci Rep 6:21522PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Diedrich CR, O'Hern J, Wilkinson RJ (2016) HIV-1 and the Mycobacterium tuberculosis granuloma: a systematic review and meta-analysis. Tuberculosis (Edinb) 98:62–76CrossRefGoogle Scholar
  47. 47.
    Dannenberg AM Jr (2006) Pathogenesis of human pulmonary tuberculosis: insights from the rabbit model. ASM Press, Washington, DCCrossRefGoogle Scholar
  48. 48.
    Hunter RL (2016) Tuberculosis as a three-act play: a new paradigm for the pathogenesis of pulmonary tuberculosis. Tuberculosis (Edinb) 97:8–17CrossRefGoogle Scholar
  49. 49.
    Elkington PT, Ugarte-Gil CA, Friedland JS (2011) Matrix metalloproteinases in tuberculosis. Eur Respir J 38(2):456–464PubMedCrossRefGoogle Scholar
  50. 50.
    Walker NF, Clark SO, Oni T, Andreu N, Tezera L, Singh S et al (2012) Doxycycline and HIV infection suppress tuberculosis-induced matrix metalloproteinases. Am J Respir Crit Care Med 185(9):989–997PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Berry MP, Graham CM, McNab FW, Xu Z, Bloch SA, Oni T et al (2010) An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis. Nature 466(7309):973–977PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Panteleev AV, Nikitina IY, Burmistrova IA, Kosmiadi GA, Radaeva TV, Amansahedov RB et al (2017) Severe tuberculosis in humans correlates best with neutrophil abundance and lymphocyte deficiency and does not correlate with antigen-specific CD4 T-cell response. Front Immunol 8:963PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Stek C, Allwood B, Walker NF, Wilkinson RJ, Lynen L, Meintjes G (2018) The immune mechanisms of lung parenchymal damage in tuberculosis and the role of host-directed therapy. Front Microbiol 9:2603PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Kwan CK, Ernst JD (2011) HIV and tuberculosis: a deadly human syndemic. Clin Microbiol Rev 24(2):351–376PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Walker NF, Wilkinson KA, Meintjes G, Tezera LB, Goliath R, Peyper JM et al (2017) Matrix degradation in human immunodeficiency virus type 1—associated tuberculosis and tuberculosis immune reconstitution inflammatory syndrome: a prospective observational study. Clin Infect Dis 65(1):121–132PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Lowe DM, Bangani N, Goliath R, Kampmann B, Wilkinson KA, Wilkinson RJ et al (2015) Effect of antiretroviral therapy on HIV-mediated impairment of the neutrophil antimycobacterial response. Ann Am Thorac Soc 12(11):1627–1637PubMedPubMedCentralGoogle Scholar
  57. 57.
    Manji M, Shayo G, Mamuya S, Mpembeni R, Jusabani A, Mugusi F (2016) Lung functions among patients with pulmonary tuberculosis in Dar es Salaam—a cross-sectional study. BMC Pulm Med 16(1):58PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Mbatchou Ngahane BH, Nouyep J, Nganda Motto M, Mapoure Njankouo Y, Wandji A, Endale M et al (2016) Post-tuberculous lung function impairment in a tuberculosis reference clinic in Cameroon. Respir Med 114:67–71PubMedCrossRefGoogle Scholar
  59. 59.
    Ralph AP, Kenangalem E, Waramori G, Pontororing GJ, Sandjaja TE et al (2013) High morbidity during treatment and residual pulmonary disability in pulmonary tuberculosis: under-recognised phenomena. PLoS One 8(11):e80302PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Mugo PN, Mecha J, Muhwa C (2018) Pulmonary function and quality of life in patients with treated smear positive pulmonary tuberculosis at three tuberculosis clinics in Nairobi, Kenya. Eur Respir J. 52:Suppl. 62, PA2749.Google Scholar
  61. 61.
    Corbeau P, Reynes J (2011) Immune reconstitution under antiretroviral therapy: the new challenge in HIV-1 infection. Blood 117(21):5582–5590PubMedCrossRefGoogle Scholar
  62. 62.
    Wilson EM, Sereti I (2013) Immune restoration after antiretroviral therapy: the pitfalls of hasty or incomplete repairs. Immunol Rev 254(1):343–354PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Hunt PW, Lee SA, Siedner MJ (2016) Immunologic biomarkers, morbidity, and mortality in treated HIV infection. J Infect Dis 214(Suppl 2):S44–S50PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Nabatanzi R, Cose S, Joloba M, Jones SR, Nakanjako D (2018) Effects of HIV infection and ART on phenotype and function of circulating monocytes, natural killer, and innate lymphoid cells. AIDS Res Ther 15(1):7PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Gupta A, Wood R, Kaplan R, Bekker LG, Lawn SD (2012) Tuberculosis incidence rates during 8 years of follow-up of an antiretroviral treatment cohort in South Africa: comparison with rates in the community. PLoS One 7(3):e34156PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular MedicineUniversity of Cape TownCape TownSouth Africa
  2. 2.Division of Medical Virology, Department of PathologyUniversity of Cape TownCape TownSouth Africa

Personalised recommendations