Advertisement

Evolutionary Drivers of Electric Signal Diversity

  • Rüdiger KraheEmail author
Chapter
Part of the Springer Handbook of Auditory Research book series (SHAR, volume 70)

Abstract

The electric signals of weakly electric fishes have seen impressive diversification since the independent origin of electric organs in the ancestors of Gymnotiformes and Mormyroidea approximately 100 million years ago. Whether the primary selective advantage of electric organs lay in their use for communication or for active sampling of the environment is unclear and may be difficult to determine. Several evolutionary innovations in both signal generation and sensory processing appear to have widened the available signal space and thus promoted dramatic radiations. Sensory drive mechanisms are unlikely to have played a major role in the diversification of signals, except for a potential role of flow regimes. Life in faster flow appears to promote faster sensory sampling and thus higher electric organ discharge rates. It seems likely that signal diversification has been driven more strongly by biotic factors. Sexual selection on signal properties and reproductive character displacement appear to have had a strong influence on signal waveform and the associated spectral properties and also on discharge frequency. Diverse evidence suggests that predation by eavesdropping electroreceptive predators has favored the reduction of low-frequency power in the signals. The observation of male signals with strong low-frequency power in sexually dimorphic species is consistent with handicap signals in that they might increase the risk of predation and also the energetic cost of signal generation. Low-frequency male signals may also have been favored by sensory bias of the receiving animals because these signals might also activate the passive, ampullary electrosensory system.

Keywords

Energetic constraints Eavesdropping Genetic drift Gymnotiform Mormyrid Neural innovation Predation Reproductive character displacement Sexual selection Weakly electric fish 

Notes

Acknowledgments

I am grateful to Bernhard Ronacher, Livio Oboti, and Lisa Schilha for critically reading the manuscript and to Jason Gallant, Frank Kirschbaum, Stefan Mucha, Kerri Ackerly, and Sophie Picq for providing some of the recordings used for Fig. 7.1.

Compliance with Ethics Requirements

Rüdiger Krahe declares that he has no conflict of interest.

References

  1. Ackerly KL, Krahe R, Sanford CP, Chapman LJ (2018) Effects of hypoxia on swimming and sensing in a weakly electric fish. J Exp biol 221:jeb172130PubMedCrossRefPubMedCentralGoogle Scholar
  2. Albert JS, Crampton WGR (2005) Diversity and phylogeny of neotropical electric fishes (Gymnotiformes). In: Bullock TH, Hopkins CD, Popper AN, Fay RR (eds) Electroreception. Springer, New York, pp 360–409Google Scholar
  3. Alle H, Roth A, Geiger JRP (2009) Energy-efficient action potentials in hippocampal mosy fibers. Science 325:1405–1408CrossRefGoogle Scholar
  4. Amézquita A, Lima AP, Jehle R, Castellanos L, Ramos O, Crawford AJ, Gasser H, Hödl W (2009) Calls, colours, shape, and genes: a multi-trait approach to the study of geographic variation in the Amazonian frog Allobates femoralis. Biol J Linn Soc 98:826–838CrossRefGoogle Scholar
  5. Andersson M (1994) Sexual selection. Princeton University Press, PrincetonGoogle Scholar
  6. Arnegard ME, Bogdanovicz SM, Hopkins CD (2005) Multiple cases of striking genetic similarity between alternate electric fish signal morphs in sympatry. Evolution 59(2):324–343PubMedCrossRefPubMedCentralGoogle Scholar
  7. Arnegard ME, McIntyre PB, Harmon LJ, Zelditch ML, Crampton WGR, Davis JK, Sullivan JP, Lavoué S, Hopkins CD (2010) Sexual signal evolution outpaces ecological divergence during electric fish species radiation. Am Nat 176(3):335–356CrossRefGoogle Scholar
  8. Attwell D, Laughlin SB (2001) An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab 21:133–1145CrossRefGoogle Scholar
  9. Barbarino-Duque A, Winemiller KO (2003) Dietary segregation among large catfishes of the Apure and Arauca Rivers, Venezuela. J Fish Biol 63:410–427CrossRefGoogle Scholar
  10. Bennett MVL (1971) Electric organs. In: Hoar WS, Randall DH (eds) Fish physiology. Academic, New York, pp 347–491Google Scholar
  11. Bermingham E, Martin AP (1998) Comparative mtDNA phylogeography of neotropical freshwater fishes: testing shared history to infer the evolutionary landscape of lower Central America. Mol Ecol 7:499–517PubMedCrossRefPubMedCentralGoogle Scholar
  12. Boughman JW (2001) Divergent sexual selection enhances reproductive isolation in sticklebacks. Nature 411:944–948PubMedCrossRefPubMedCentralGoogle Scholar
  13. Boyle KS, Colleye O, Parmentier E (2014) Sound production to electric discharge: sonic muscle evolution in progress in Synodontis spp. catfishes (Mochokidae). Proc R Soc Lond B 281:20141197CrossRefGoogle Scholar
  14. Bradbury JW, Vehrencamp SL (2011) Principles of animal communication, 2nd edn. Sinauer, SunderlandGoogle Scholar
  15. Brenowitz EA (1986) Environmental influences on acoustic and electric animal communication. Brain Behav Evol 28:32–42PubMedCrossRefPubMedCentralGoogle Scholar
  16. Carlson BA, Arnegard ME (2011) Neural innovations and the diversification of African weakly electric fishes. Commun Integr Biol 4(6):720–725PubMedPubMedCentralCrossRefGoogle Scholar
  17. Carlson BA, Hopkins CD (2004) Stereotyped temporal patterns in electrical communication. Anim Behav 68:867–878CrossRefGoogle Scholar
  18. Carlson BA, Hasan SM, Hollmann M, Miller DB, Harmon LJ, Arnegard ME (2011) Brain evolution triggers increased diversification of electric fishes. Science 332:583–586PubMedCrossRefPubMedCentralGoogle Scholar
  19. Castelló ME, Aguilera PA, Trujillo-Cenóz O, Caputi AA (2000) Electroreception in Gymnotus carapo: pre-receptor processing and the distribution of electroreceptor types. J Exp Biol 203:3279–3287PubMedPubMedCentralGoogle Scholar
  20. Catania KC (2016) Leaping eels electrify threats, supporting Humboldt’s account of a battle with horses. Proc Natl Acad Sci USA 113:6979–6984CrossRefGoogle Scholar
  21. Cecil DJ, Buechler DE, Blakeslee RJ (2015) TRMM LIS climatology of thunderstorm occurrence and conditional lightning flash rates. J Clim 28:6536–6547CrossRefGoogle Scholar
  22. Corcoran AJ, Moss CF (2017) Sensing in a noisy world: lessons from auditory specialists, echolocating bats. J Exp Biol 220:4554–4566PubMedCrossRefPubMedCentralGoogle Scholar
  23. Crampton WGR (1998a) Effects of anoxia on the distribution, respiratory strategies and electric signal diversity of gymnotiform fishes. J Fish Biol 53(Suppl):307–330CrossRefGoogle Scholar
  24. Crampton WGR (1998b) Electric signal design and habitat preferences in a species rich assemblage of Gymnotiform fishes from the upper Amazon basin. An Acad Bras Ci 70(4):805–847Google Scholar
  25. Crampton WGR (2006) Evolution of electric signal diversity in gymnotiform fishes. Part B. signal design. In: Ladich F, Collin SP, Moller P (eds) Communication in fishes, vol 2. Science Publishers, Enfield, pp 697–731Google Scholar
  26. Crampton WGR (2011) An ecological perspective on diversity and distributions. In: Albert JS, Reis RE (eds) Historical biogeography of Neotropical freshwater fishes. University of California Press, Berkeley, pp 165–189CrossRefGoogle Scholar
  27. Crampton WGR, Albert JS (2006) Evolution of electric signal diversity in gymnotiform fishes. Part a. phylogenetic systematics, ecology, and biogeography. In: Ladich F, Collin SP, Moller P (eds) Communication in fishes, vol 2. Science Publishers, Enfield, pp 647–696Google Scholar
  28. Crampton WGR, Lovejoy NR, Waddell JC (2011) Reproductive character displacement and signal ontogeny in a sympatric assemblage of electric fish. Evolution 65(6):1650–1666CrossRefGoogle Scholar
  29. Crampton WGR, Rodríguez-Cattáneo A, Lovejoy NR, Caputi AA (2013) Proximate and ultimate causes of signal diversity in the electric fish Gymnotus. J Exp Biol 216:2523–2541CrossRefGoogle Scholar
  30. Diaz RJ, Breitburg DL (2009) The hypoxic environment. In: Richards JG, Farrell AP, Brauner CJ (eds) Hypoxia, Fish physiology, vol 27. Elsevier, Amsterdam, pp 1–23CrossRefGoogle Scholar
  31. Dunlap KD (2002) Hormonal and body size correlates of electrocommunication behavior during dyadic interactions in a weakly electric fish, Apteronotus leptorhynchus. Horm Behav 41:187–194PubMedCrossRefPubMedCentralGoogle Scholar
  32. Dunlap KD, Pelczar PL, Knapp R (2002) Social interactions and cortisol treatment increase the production of aggressive electrocommunication signals in male electric fish, Apteronotus leptorhynchus. Horm Behav 42:97–108PubMedCrossRefPubMedCentralGoogle Scholar
  33. Dunlap KD, Silva AC, Smith GT, Zakon HH (2017) Weakly electric fish: behavior, neurobiology, and neuroendocrinology. In: Hormones, brain and behavior, vol 2, 3rd edn. Elsevier, Amsterdam, pp 69–98CrossRefGoogle Scholar
  34. Endler JA (1980) Natural selection on color patterns in Poecilia reticulata. Evolution 34:76–91PubMedCrossRefPubMedCentralGoogle Scholar
  35. Endler JA (1992) Signals, signal conditions, and the direction of evolution. Am Nat 139:S125–S153CrossRefGoogle Scholar
  36. Enger PS, Szabo T (1968) Effect of temperature on the discharge rates of the electric organ of some gymnotids. Comp Biochem Physiol 27:625–627PubMedCrossRefPubMedCentralGoogle Scholar
  37. Engler G, Fogarty CM, Banks JR, Zupanc GKH (2000) Spontaneous modulations of the electric organ discharge in the weakly electric fish, Apteronotus leptorhynchus: a biophysical and behavioral analysis. J Comp Physiol A 186:645–660PubMedCrossRefPubMedCentralGoogle Scholar
  38. Erwin DH (2015) Novelty and innovation in the history of life. Curr Biol 25:R930–R940PubMedCrossRefPubMedCentralGoogle Scholar
  39. Falk JJ, ter Hofstede HM, Jones PL, Dixon MM, Faure PA, Kalko EKV, Page RA (2015) Sensory-based niche partitioning in a multiple predator–multiple prey community. Proc R Soc Lond B 282:20150520CrossRefGoogle Scholar
  40. Feulner PGD, Kirschbaum F, Mamonekene V, Ketmaier V, Tiedemann R (2007) Adaptive radiation in African weakly electric fish (Teleostei: Mormyridae: Campylomormyrus): a combined molecular and morphological approach. J Evol Biol 20:403–414PubMedCrossRefPubMedCentralGoogle Scholar
  41. Feulner PGD, Plath M, Engelmann J, Kirschbaum F, Tiedemann R (2009a) Electrifying love: electric fish use species-specific discharge for mate recognition. Biol Lett 5:225–228PubMedCrossRefPubMedCentralGoogle Scholar
  42. Feulner PGD, Plath M, Engelmann J, Kirschbaum F, Tiedemann R (2009b) Magic trait electric organ discharge (EOD). Commun Integr Biol 2(4):329–331PubMedPubMedCentralCrossRefGoogle Scholar
  43. Fotowat H, Harrison RR, Krahe R (2013) Statistics of the electrosensory input in the freely swimming weakly electric fish Apteronotus leptorhynchus. J Neurosci 33:13758–13772PubMedPubMedCentralCrossRefGoogle Scholar
  44. Fugère V, Ortega H, Krahe R (2011) Electrical signalling of dominance in a wild population of electric fish. Biol Lett 7:197–200PubMedCrossRefPubMedCentralGoogle Scholar
  45. Gallant JR, Arnegard ME, Sullivan JP, Carlson BA, Hopkins CD (2011) Signal variation and its morphological correlates in Paramormyrops kingsleyae provide insight into the evolution of electrogenic signal diversity in mormyrid electric fish. J Comp Physiol A 197:799–817CrossRefGoogle Scholar
  46. Gallant JR, Traeger LL, Volkening JD, Moffett H, Chen PH, Novina CD, Phillips GNJ, Anand R, Wells GB, Pinch M, Güth R, Unguez GA, Albert JS, Zakon HH, Samanta MP, Sussman MR (2014) Genomic basis for the convergent evolution of electric organs. Science 344:1522–1525PubMedPubMedCentralCrossRefGoogle Scholar
  47. Hanika S, Kramer B (1999) Electric organ discharges of mormyrid fish as a possible cue for predatory catfish. Naturwissenschaften 86:286–288CrossRefGoogle Scholar
  48. Hanika S, Kramer B (2000) Electrosensory prey detection in the African sharptooth catfish, Clarias gariepinus (Clariidae), of a weakly electric mormyrid fish, the bulldog (Marcusenius macrolepidotus). Behav Ecol Sociobiol 48:218–228CrossRefGoogle Scholar
  49. Hanika S, Kramer B (2005) Intra-male variability of its communication signal in the weakly electric fish, Marcusenius macrolepidotus (South African form), and possible functions. Behaviour 142:145–166CrossRefGoogle Scholar
  50. Heiligenberg W (1975) Theoretical and experimental approaches to spatial aspects of electrolocation. J Comp Physiol 103:247–272CrossRefGoogle Scholar
  51. Heiligenberg W (1976) Electrolocation and jamming avoidance in the mormyrid fish Brienomyrus. J Comp Physiol 109:357–372CrossRefGoogle Scholar
  52. Heiligenberg W (1991) Neural nets in electric fish. MIT Press, Cambridge, MAGoogle Scholar
  53. Heiligenberg W, Baker C, Bastian J (1978) The jamming avoidance response in gymnotoid pulse-species: a mechanism to minimize the probability of pulse-train coincidence. J Comp Physiol 124:211–224CrossRefGoogle Scholar
  54. Henninger J, Krahe R, Grewe J, Kirschbaum F, Benda J (2018) Statistics of natural communication signals observed in the wild identify important yet neglected stimulus regimes in weakly electric fish. J Neurosci 38:5456–5465PubMedCrossRefPubMedCentralGoogle Scholar
  55. Hopkins CD (1972) Sex differences in electric signaling in an electric fish. Science 176:1035–1037PubMedPubMedCentralCrossRefGoogle Scholar
  56. Hopkins CD (1973) Lightning as background noise for communication among electric fish. Nature 242:268–270CrossRefGoogle Scholar
  57. Hopkins CD (1974) Electric communication: functions in the social behavior of Eigenmannia virescens. Behaviour 272:270–305CrossRefGoogle Scholar
  58. Hopkins CD (1976) Stimulus filtering and electroreception: tuberous electroreceptors in three species of gymnotoid fish. J Comp Physiol 111:171–207CrossRefGoogle Scholar
  59. Hopkins CD (1980) Evolution of electric communication channels of mormyrids. Behav Ecol Sociobiol 7:1–13CrossRefGoogle Scholar
  60. Hopkins CD (1986) Temporal structure of non-propagated electric communication signals. Brain Behav Evol 28:43–59PubMedCrossRefPubMedCentralGoogle Scholar
  61. Hopkins CD (1988) Neuroethology of electric communication. Annu Rev Neurosci 11:497–535PubMedCrossRefPubMedCentralGoogle Scholar
  62. Hopkins CD (1999a) Design features for electric communication. J Exp Biol 202:1217–1228Google Scholar
  63. Hopkins CD (1999b) Signal evolution in electric communication. In: Hauser MD, Konishi M (eds) The design of animal communication. MIT Press, Cambridge, MA, pp 461–491Google Scholar
  64. Hopkins CD, Heiligenberg W (1978) Evolutionary designs for electric signals and electroreceptors in gymnotoid fishes of Surinam. Behav Ecol Sociobiol 3:113–134CrossRefGoogle Scholar
  65. Hopkins CD, Comfort NC, Bastian J, Bass AH (1990) Functional analysis of sexual dimorphism in an electric fish, Hypopomus Pinnicaudatus, order Gymnotiformes. Brain Behav Evol 35(6):350–367CrossRefGoogle Scholar
  66. Hoskin CJ, Higgie M (2010) Speciation via species interactions: the divergence of mating traits within species. Ecol Lett 13:409–420PubMedCrossRefPubMedCentralGoogle Scholar
  67. Irwin DE, Thimgan MP, Irwin JH (2008) Call divergence is correlated with geographic and genetic distance in greenish warblers (Phylloscopus trochiloides): a strong role for stochasticity in signal evolution? J Evol Biol 21:435–448PubMedCrossRefPubMedCentralGoogle Scholar
  68. Julian D, Crampton WGR, Wohlgemuth SE, Albert JS (2003) Oxygen consumption in weakly electric Neotropical fishes. Oecol 137:502–511CrossRefGoogle Scholar
  69. Kalmijn AJ (1974) The detection of electric fields from inanimate and animate sources other than electric organs. In: Fessard A (ed) Electroreceptors and other specialized receptors in lower vertrebrates. Springer, Berlin, Heidelberg, pp 147–200CrossRefGoogle Scholar
  70. Kawasaki M (2009) Evolution of time-coding systems in weakly electric fishes. Zool Sci 26(9):587–599PubMedPubMedCentralCrossRefGoogle Scholar
  71. Knudsen EI (1974) Behavioral thresholds to electric signals in high frequency electric fish. J Comp Physiol 91:333–353CrossRefGoogle Scholar
  72. Knudsen EI (1975) Spatial aspects of the electric fields generated by weakly electric fish. J Comp Physiol 99:103–118CrossRefGoogle Scholar
  73. Kramer B (1997) A field study of African elephantfish (Mormyridae, Teleostei): discharges in Marcusenius macrolepidotus (Peters, 1852) and Petrocephalus catostoma (Günther, 1866) as related to sex. J Afr Zool 111:313–341Google Scholar
  74. Kramer B, Kirschbaum F, Markl H (1981) Species specificity of electric organ discharges in a sympatric group of gymnotoid fish from Manaus (Amazonas). In: Szabo T, Czeh G (eds) Sensory physiology of aquatic lower vertebrates, Advances in physiological sciences, vol 31. Akademiai Kiado, Budapest, pp 195–219CrossRefGoogle Scholar
  75. Lamanna F, Kirschbaum F, Ernst ARR, Feulner PGD, Mamonekene V, Paul C, Tiedemann R (2016) Species delimitation and phylogenetic relationships in a genus of African weakly-electric fishes (Osteoglossiformes, Mormyridae, Campylomormyrus). Mol Phylogen Evol 101:8–18CrossRefGoogle Scholar
  76. Lannoo MJ, Lannoo SJ (1993) Why do electric fishes swim backwards – an hypothesis based on gymnotiform foraging behavior interpreted through sensory constraints. Env Biol Fish 36(2):157–165CrossRefGoogle Scholar
  77. Lavoué S, Miya M, Arnegard ME, Sullivan JP, Hopkins CD, Nishida M (2012) Comparable ages for the independent origins of electrogenesis in African and South American weakly electric fishes. PLoS One 7:e36287PubMedPubMedCentralCrossRefGoogle Scholar
  78. Lewis JE, Gilmour KM, Moorhead MJ, Perry SF, Markham MR (2014) Action potential energetics at the organismal level reveal a trade-off in efficiency at high firing rates. J Neurosci 34:197–201PubMedPubMedCentralCrossRefGoogle Scholar
  79. Lissmann HW (1958) On the function and evolution of electric organs in fish. J Exp Biol 35:156–191Google Scholar
  80. Lissmann HW (1961) Ecological studies on Gymnotids. In: Chagas C, De Carvalho AP (eds) Bioelectrogenesis. Elsevier, Amsterdam, pp 215–223Google Scholar
  81. Lissmann HW, Schwassmann HO (1965) Activity rhythm of an electric fish, Gymnorhamphichthys hypostomus, Ellis. Z Vergl Physiol 51:153–171CrossRefGoogle Scholar
  82. Lorenzo D, Silva A, Macadar O (2006) Electrocommunication in Gymnotiformes: jamming avoidance and social signals during courtship. In: Ladich F, Collin SP, Moller P (eds) Communication in fishes, vol 2. Science Publishers, Enfield, pp 753–779Google Scholar
  83. Lovejoy NR, Lester K, Crampton WGR, Marques FPL, Albert JS (2010) Phylogeny, biogeography, and electric signal evolution of Neotropical knifefishes of the genus Gymnotus (Osteichthyes: Gymnotidae). Mol Phylogen Evol 54:278–290CrossRefGoogle Scholar
  84. Maan ME, Seehausen O (2011) Ecology, sexual selection and speciation. Ecol Lett 14:591–602PubMedCrossRefPubMedCentralGoogle Scholar
  85. Machnik P, Kramer B (2008) Female choice by electric pulse duration: attractiveness of the males' communication signal assessed by female bulldog fish, Marcusenius pongolensis (Mormyridae, Teleostei). J Exp Biol 211:1969–1977PubMedCrossRefPubMedCentralGoogle Scholar
  86. Markham MR, McAnelly L, Stoddard PK, Zakon HH (2009) Circadian and social cues regulate ion channel trafficking. PLoS Biol 7(9):e1000203PubMedPubMedCentralCrossRefGoogle Scholar
  87. Marrero C, Winemiller KO (1993) Tube-snouted gymnotiform and mormyriform fishes: convergence of a specialized foraging mode in teleosts. Env Biol Fish 38:299–309CrossRefGoogle Scholar
  88. McAnelly L, Zakon HH (2000) Coregulation of voltage-dependent kinetics of Na+ and K+ currents in electric organ. J Neurosci 20(9):3408–3414PubMedPubMedCentralCrossRefGoogle Scholar
  89. McAnelly L, Zakon HH (2007) Androgen modulates the kinetics of the delayed rectifying K+ current in the electric organ of a weakly electric fish. Dev Neurobiol 67:1589–1597CrossRefGoogle Scholar
  90. Merron GS (1993) Pack-hunting in two species of catfish, Clarias gariepinus and C. ngamensis, in the Okavango Delta, Botswana. J Fish Biol 43:575–584Google Scholar
  91. Moller P (1995) Electric fishes. History and behavior, Fish and fisheries series, vol 17. Chapman and Hall, LondonGoogle Scholar
  92. Nelson ME, MacIver MA (1999) Prey capture in the weakly electric fish Apteronotus albifrons: sensory acquisition strategies and electrosensory consequences. J Exp Biol 202:1195–1203PubMedPubMedCentralGoogle Scholar
  93. Pfennig KS, Pfennig DW (2009) Character displacement: ecological and reproductive responses to a common evolutionary problem. Q Rev Biol 84(3):253–276PubMedPubMedCentralCrossRefGoogle Scholar
  94. Picq S, Alda F, Krahe R, Bermingham E (2014) Miocene and Pliocene colonization of the Central American Isthmus by the weakly electric fish Brachyhypopomus occidentalis (Hypopomidae, Gymnotiformes). J Biogeogr 41:1520–1532CrossRefGoogle Scholar
  95. Picq S, Alda F, Bermingham E, Krahe R (2016) Drift-driven evolution of electric signals in a Neotropical knifefish. Evolution 70:2134–2144PubMedCrossRefPubMedCentralGoogle Scholar
  96. Reardon EE, Parisi A, Krahe R, Chapman LJ (2011) Energetic constraints on electric signalling in wave-type weakly electric fishes. J Exp Biol 214:4141–4150CrossRefGoogle Scholar
  97. Reid S (1983) La biologia de los bagres rayados Pseudoplatystoma fasciatum y P. tigrinum en la cuenca del rio Apure – Venezuela. Rev UNELLEZ Ciencia Tecn 1:13–41Google Scholar
  98. Rodríguez-Cattáneo A, Aguilera P, Cilleruelo E, Crampton WGR, Caputi AA (2013) Electric organ discharge diversity in the genus Gymnotus: anatomo-functional groups and electrogenic mechanisms. J Exp Biol 216:1501–1515PubMedCrossRefPubMedCentralGoogle Scholar
  99. Ryan MJ, Keddy-Hector A (1992) Directional patterns of female choice and the role of sensory biases. Am Nat 139(Suppl):S4–S35CrossRefGoogle Scholar
  100. Salazar VL, Stoddard PK (2008) Sex differences in energetic costs explain sexual dimorphism in the circadian rhythm modulation of the electrocommunication signal of the gymnotiform fish, Brachyhypopomus pinnicaudatus. J Exp Biol 211:1012–1020CrossRefGoogle Scholar
  101. Salazar VL, Krahe R, Lewis JE (2013) The energetics of electric organ discharge generation in gymnotiform weakly electric fish. J Exp Biol 216:2459–2468CrossRefGoogle Scholar
  102. Scheffel A, Kramer B (2006) Intra- and interspecific electrocommunication among sympatric mormyrids in the Upper Zamebzi River. In: Ladich F, Collin SP, Moller P (eds) Communication in fishes, vol 2. Science Publishers, Enfield, pp 733–751Google Scholar
  103. Schurmann H, Steffensen JF (1997) Effects of temperature, hypoxia and activity on the metabolism of juvenile Atlantic cod. J Fish Biol 50:1166–1180Google Scholar
  104. Seehausen O, Terai Y, Magalhaes IS, Carleton KL, Mrosso HDJ, Miyagi R, Van der Sluijs I, Schneider MV, Maan ME, Tachida H, Imai H, Okada N (2008) Speciation through sensory drive in cichlid fish. Nature 455:620–626PubMedCrossRefPubMedCentralGoogle Scholar
  105. Servedio MR, van Doorn GS, Kopp M, Frame AM, Nosil P (2011) Magic traits in speciation: ‘magic’ but not rare? Trends Ecol Evol 26(8):389–397PubMedCrossRefPubMedCentralGoogle Scholar
  106. Silva A, Quintana L, Galeano M, Errandonea P, Macadar O (1999) Water temperature sensitivity of EOD waveform in Brachyhypopomus pinnicaudatus. J Comp Physiol A 185:187–197CrossRefGoogle Scholar
  107. Silva A, Perrone R, Macadar O (2007) Environmental, seasonal, and social modulations of basal activity in a weakly electric fish. Physiol Behav 90:525–536PubMedCrossRefPubMedCentralGoogle Scholar
  108. Silva A, Quintana L, Perrone R, Sierra F (2008) Sexual and seasonal plasticity in the emission of social electric signals. Behavioral approach and neural bases. J Physiol (Paris) 102:272–278CrossRefGoogle Scholar
  109. Smith GT (2013) Evolution and hormonal regulation of sex differences in the electrocommunication behavior of ghost knifefishes (Apteronotidae). J Exp Biol 216:2421–2433PubMedCrossRefPubMedCentralGoogle Scholar
  110. Smith AR, Proffitt MR, Ho WW, Mullaney CB, Maldonado-Ocampo JA, Alves-Gomes JA, Smith GT (2016) Evolution of electric communication signals in the South American ghost knifefishes (Gymnotiformes: Apteronotidae): a phylogenetic comparative study using a sequence-based phylogeny. J Physiol Paris 110:302–313PubMedPubMedCentralCrossRefGoogle Scholar
  111. Stoddard PK (1999) Predation enhances complexity in the evolution of electric fish signals. Nature 400:254–256CrossRefGoogle Scholar
  112. Stoddard PK (2002) Electric signals: predation, sex, and environmental constraints. In: Slater PJB, Rosenblatt JS, Snowdon CT, Roper TJ (eds) Advances in the study of behavior, vol 31. Academic, San Diego, pp 201–242Google Scholar
  113. Stoddard PK, Markham MR (2008) Signal cloaking by electric fish. Bioscience 58:415–425PubMedPubMedCentralCrossRefGoogle Scholar
  114. Stoddard PK, Salazar VL (2011) Energetic cost of communication. J Exp Biol 214:200–205PubMedCrossRefPubMedCentralGoogle Scholar
  115. Stoddard PK, Zakon HH, Markham MR, McAnelly L (2006) Regulation and modulation of electric waveforms in gymnotiform electric fish. J Comp Physiol A 192:613–624CrossRefGoogle Scholar
  116. Stoddard PK, Markham MR, Salazar VL, Allee S (2007) Circadian rhythms in electric waveform structure and rate in the electric fish Brachyhypopomus pinnicaudatus. Physiol Behav 90:11–20CrossRefGoogle Scholar
  117. Sukhum KV, Freiler MK, Wang R, Carlson BA (2016) The costs of a big brain: extreme encephalization results in higher energetic demand and reduced hypoxia tolerance in weakly electric African fishes. Proc R Soc Lond B 283:20162157CrossRefGoogle Scholar
  118. Sullivan JP, Lavoué S, Hopkins CD (2002) Discovery and phylogenetic analysis of a riverine species flock of African electric fishes (Mormyridae: Teleostei). Evolution 56(3):597–616PubMedCrossRefPubMedCentralGoogle Scholar
  119. Sullivan JP, Zuanon J, Cox Fernandes C (2013) Two new species and a new subgenus of toothed Brachyhypopomus electric knifefishes (Gymnotiformes, Hypopomidae) from the Central Amazon and considerations pertaining to the evolution of a monophasic electric organ discharge. ZooKeys 327:1–34CrossRefGoogle Scholar
  120. Turner CR, Derylo M, De Santana D, Alves-Gomes JA, Smith GT (2007) Phylogenetic comparative analysis of electric communication signals in ghost knifefishes (Gymnotiformes: Apteronotidae). J Exp Biol 210:4104–4122PubMedCrossRefPubMedCentralGoogle Scholar
  121. Vehrencamp SL, Bradbury JW, Gibson RM (1989) The energetic cost of display in male sage grouse. Anim Behav 38:885–896CrossRefGoogle Scholar
  122. Vélez A, Kohashi T, Lu A, Carlson BA (2017) The cellular and circuit basis for evolutionary change in sensory perception in mormyrid fishes. Sci Rep 7:3783PubMedPubMedCentralCrossRefGoogle Scholar
  123. Von der Emde G (1999) Active electrolocation of objects in weakly electric fish. J Exp Biol 202:1205–1215Google Scholar
  124. Waddell JC, Rodríguez-Cattáneo A, Caputi AA, Crampton WGR (2016) Electric organ discharges and near-field spatiotemporal patterns of the electromotive force in a sympatric assemblage of Neotropical electric knifefish. J Physiol Paris 110:164–181CrossRefGoogle Scholar
  125. Westby GWM (1988) The ecology, discharge diversity and predatory behaviour of gymnotiforme electric fish in the coastal streams of French Guiana. Behav Ecol Sociobiol 22:341–354Google Scholar
  126. Wilkins MR, Seddon N, Safran RJ (2013) Evolutionary divergence in acoustic signals: causes and consequences. Trends Ecol Evol 28:156–166PubMedCrossRefPubMedCentralGoogle Scholar
  127. Zahavi A (1975) Mate selection – a selection for a handicap. J Theoret Biol 53:205–214CrossRefGoogle Scholar
  128. Zakon HH, Oestreich J, Tallarovic SK, Triefenbach F (2002) EOD modulations of brown ghost electric fish: JARs, chirps, rises, and dips. J Physiol Paris 96:451–458PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institut für Biologie, Humboldt-Universität zu BerlinBerlinGermany

Personalised recommendations