Hormonal Influences on Social Behavior in South American Weakly Electric Fishes

  • Ana C. SilvaEmail author
Part of the Springer Handbook of Auditory Research book series (SHAR, volume 70)


This chapter highlights the contributions of four iconic Gymnotiform model species to the understanding of the neuroendocrine control of social behavior. In weakly electric fish, social behavior includes electric signaling in addition to locomotor displays. The central circuitry commanding the electric organ discharge (EOD) is well-known, and thus electrocommunication displays can be easily linked to the structures responsible for their modulation. Sexually dimorphic frequency (central) and waveform (peripheral) modulations are reviewed. In Sternopygus macrurus, androgens decrease the EOD frequency and broaden the pulse duration, whereas estrogens induce opposite effects. Long-term steroid hormone effects, acting directly on the ion-channel kinetic properties of electrocytes, combine with short-term peptide EOD waveform modulations to adapt electric signaling to environmental and social demands. Closely related species of the family Apteronotidae exhibit diverse sexual dimorphisms in EOD frequency, indicating that the actions of steroids may change their valence and sensitivity across species. The electric signal plasticity of Brachyhypopomus gauderio in response to seasonal, daily, and social changes of the environment is outstanding. The interplay of steroids and peptidergic hormones explain long- and short-term modulation of EOD amplitude, duration, and rate. In Gymnotus omarorum, gonadal-independent hormonal mechanisms are involved in the regulation of territorial aggression and in the emergence of the dominant subordinate status.


Apteronotus Brachyhypopomus Gymnotus Melanocortins Sexual dimorphism Signal plasticity Sternopygus Steroid hormone actions Territorial aggression Vasotocin 



A preliminary version of this chapter was reviewed and edited by Kent Dunlap and Laura Quintana. The figures have been organized with the help of Laura Nozar.

Compliance with Ethics Statement

Ana C. Silva declares that she has no conflict of interest.


  1. Adkins-Regan E (2005) Hormones and animal social behavior. Princeton University Press, PrincetonGoogle Scholar
  2. Allee SJ, Markham MR, Stoddard PK (2009) Androgens enhance plasticity of an electric communication signal in female knifefish, Brachyhypopomus pinnicaudatus. Horm Behav 56:264–273PubMedPubMedCentralCrossRefGoogle Scholar
  3. Batista G, Zubizarreta L, Perrone R, Silva A (2012) Non-sex-biased dominance in a sexually monomorphic electric fish: fight structure and submissive electric signalling. Ethology 118:398–410CrossRefGoogle Scholar
  4. Bennett MVL (1971) Electric organs. In: Hoar WS, Randall DJ (eds) Fish physiology. Academic, London, pp 347–491Google Scholar
  5. Black-Cleworth P (1970) The role of electrical discharges in the non-reproductive social behaviour of Gymnotus carapo. Anim Behav Monogr 3:1–77CrossRefGoogle Scholar
  6. Brown JI (1975) The evolution of behavior. Norton, New YorkGoogle Scholar
  7. Caldwell GS, Glickman SE, Smith ER (1984) Seasonal aggression independent of seasonal testosterone in wood rats. Proc Natl Acad Sci 81(16):5255–5257PubMedCrossRefPubMedCentralGoogle Scholar
  8. Caputi AA, Silva A, Macadar O (1998) The EOD of Brachyhypopomus pinnicaudatus: the effect of environmental variables on waveform generation. Brain Behav Evol 52:148–158CrossRefGoogle Scholar
  9. Caputi AA, Carlson B, Macadar O (2005) Electric organs and their control. In: Bullock TH, Hopkins CD, Popper AN, Fay R (eds) Electroreception. Springer, New York, pp 410–451CrossRefGoogle Scholar
  10. Curtis CC, Stoddard PK (2003) Mate preference in female electric fish, Brachyhypopomus pinnicaudatus. Anim Behav 66:329–336CrossRefGoogle Scholar
  11. Dulka JG, Maler L (1994) Testosterone modulates female chirping behavior in the weakly electric fish, Apteronotus leptorhynchus. J Comp Physiol A 174:331–343CrossRefGoogle Scholar
  12. Dunlap KD (2002) Hormonal and body size correlates of electrocommunication behavior during dyadic interactions in a weakly electric fish, Apteronotus leptorhynchus. Horm Behav 41:187–194PubMedPubMedCentralCrossRefGoogle Scholar
  13. Dunlap KD, McAnelly LM, Zakon HH (1997) Estrogen modifies an electrocommunication signal by altering the electrocyte sodium current in an electric fish, Sternopygus. J Neurosci 17:2869–2875PubMedPubMedCentralCrossRefGoogle Scholar
  14. Dunlap KD, Thomas P, Zakon HH (1998) Diversity of sexual dimorphism in electrocommunication signals and its androgen regulation in a genus of electric fish, Apteronotus. J Comp Physiol A 183:77–86PubMedCrossRefPubMedCentralGoogle Scholar
  15. Dunlap KD, Silva A, Smith GT, Zakon HH (2017) Weakly electric fish: behavior, neurobiology, and neuroendocrinology. In: Pfaff DW, Joëls M (eds) Hormones, brain, and behavior, 3rd edn. Academic, Oxford, pp 69–98CrossRefGoogle Scholar
  16. Dye J (1987) Dynamics and stimulus-dependence of pacemaker control during behavioral modulations in the weakly electric fish, Apteronotus. J Comp Physiol A 163:175–185CrossRefGoogle Scholar
  17. Engler E, Fogarty C, Banks J, Zupanc G (2000) Spontaneous modulations of the electric organ discharge in the weakly electric fish, Apteronotus leptorhynchus: a biophysical and behavioral analysis. J Comp Physiol A 186:645–660PubMedPubMedCentralCrossRefGoogle Scholar
  18. Ferrari MB, McAnelly LM, Zakon HH (1995) Individual variation in and androgen-modulation of the sodium current in electric organ. J Neurosci 15:4023–4032PubMedPubMedCentralCrossRefGoogle Scholar
  19. Ferris C (1992) Role of vasopressin in aggressive and dominant/subordinate behaviors. Ann N Y Acad Sci 652:212–226PubMedCrossRefPubMedCentralGoogle Scholar
  20. Few WP, Zakon HH (2001) Androgens alter electric organ discharge pulse duration despite stability in electric organ discharge frequency. Horm Behav 40:434–442PubMedCrossRefPubMedCentralGoogle Scholar
  21. Few WP, Zakon HH (2007) Sex differences in and hormonal regulation of Kv1 potassium channel gene expression in the electric organ: molecular control of a social signal. Dev Neurobiol 67:535–549CrossRefGoogle Scholar
  22. Franchina CR, Stoddard PK (1998) Plasticity of the electric organ discharge waveform of the electric fish Brachyhypopomus pinnicaudatus. I. Quantification of day-night changes. J Comp Physiol A 183:759–768PubMedCrossRefPubMedCentralGoogle Scholar
  23. Franchina CR, Salazar VL, Volmar CH, Stoddard PK (2001) Plasticity of the electric organ discharge waveform of the electric fish Brachyhypopomus pinnicaudatus. II Social effects. J Comp Physiol A 173:281–292Google Scholar
  24. Gavassa S, Silva AC, Stoddard PK (2011) Tight hormonal phenotypic integration ensures honesty of the electric signal of male and female Brachyhypopomus gauderio. Horm Behav 60:420–426PubMedCrossRefPubMedCentralGoogle Scholar
  25. Gavassa S, Silva AC, Gonzalez E, Stoddard PK (2012) Signal modulation as a mechanism for handicap disposal. Anm Behav 83:935–944CrossRefGoogle Scholar
  26. Goldina A, Gavassa S, Stoddard PK (2011) Testosterone and 11- ketotestosterone have different regulatory effects on electric communication signals of male Brachyhypopomus gauderio. Horm Behav 60:139–147PubMedPubMedCentralCrossRefGoogle Scholar
  27. Goodson JL, Bass AH (2001) Social behavior functions and related anatomical characteristics of vasotocin/vasopressin systems in vertebrates. Brain Res Rev 35:246–265PubMedCrossRefPubMedCentralGoogle Scholar
  28. Greenwood AK, Wark AR, Fernald RD, Hofmann HA (2008) Expression of arginine vasotocin in distinct preoptic regions is associated with dominant and subordinate behaviour in an African cichlid fish. ProcR Soc B Biol Sci 275:2393–2402CrossRefGoogle Scholar
  29. Heimovics SA, Trainor BC, Soma KK (2015) Rapid effects of estradiol on aggression in birds and mice: the fast and the furious. Int Comp Biol 55(2):281–293CrossRefGoogle Scholar
  30. Ho WW, Rack JM, Smith GT (2013) Divergence in androgen sensitivity contributes to population differences in sexual dimorphism of electro- communication behavior. Horm Behav 63:49–53PubMedCrossRefPubMedCentralGoogle Scholar
  31. Hopkins CD (1972) Sex differences in electric signaling in an electric fish. Science 23:55–60Google Scholar
  32. Hopkins CD (1974) Electric communication in the reproductive behavior of Sternopygus macrurus (Gymnotoidei). Zeitschrift Fur Tierpsychologie 35:518–535PubMedCrossRefPubMedCentralGoogle Scholar
  33. Hopkins CD, Comfort NC, Bastian J, Bass AH (1990) Functional analysis of sexual dimorphism in an electric fish, Hypopomus pinnicaudatus, order Gymnotiformes. Brain Behav Evol 35:350–367CrossRefGoogle Scholar
  34. Huffman LS, Hinz FI, Wojcik S, Aubin-Horth N, Hofmann HA (2015) Arginine vasotocin regulates social ascent in the African cichlid fish Astatotilapia burtoni. Gen Comp Endocrinol 212:106–113PubMedCrossRefPubMedCentralGoogle Scholar
  35. Insel TR, Young LJ (2000) Neuropeptides and the evolution of social behavior. Curr Opin Neurobiol 10:784–789PubMedCrossRefPubMedCentralGoogle Scholar
  36. Jalabert C, Quintana L, Pessina P, Silva A (2015) Extra-gonadal steroids modulate non-breeding territorial aggression in weakly electric fish. Horm Behav 72:60–67PubMedCrossRefPubMedCentralGoogle Scholar
  37. Johnson ZV, Young LJ (2017) Oxytocin and vasopressin neural networks: implications for social behavioral diversity and translational neuroscience. Neurosci Biobehav Rev 76:87–98PubMedPubMedCentralCrossRefGoogle Scholar
  38. Kawasaki M, Heiligenberg W (1989) Distinct mechanisms of modulation in a neuronal oscillator generate different social signals in the electric fish Hypopomus. J Comp Physiol A 165:731–741PubMedCrossRefPubMedCentralGoogle Scholar
  39. Kawasaki M, Heiligenberg W (1990) Different classes of glutamate receptors and GABA mediate distinct modulations of a neuronal oscillator, the medullary pacemaker of a gymnotiform electric fish. J Neurosci 10:3896–3904PubMedPubMedCentralCrossRefGoogle Scholar
  40. Kennedy G, Heiligenberg W (1994) Ultrastructural evidence of GABA-ergic inhibition and glutamatergic excitation in the pacemaker nucleus of the gymnotiform electric fish, Hypopomus. J Comp Physiol A 174:267–280PubMedCrossRefPubMedCentralGoogle Scholar
  41. King JA (1973) The ecology of aggressive behavior. Annu Rev Ecol Syst 4:117–138CrossRefGoogle Scholar
  42. Kirschbaum F (1995) Taxonomy, zoogeography and general ecology of south American knifefishes (Gymnotiformes). In: Moller P (ed) Electric fishes. History and behavior. Chapman & Hall, London, pp 446–464Google Scholar
  43. Liu H, Wu M, Zakon HH (2007) Individual variation and hormonal modulation of a sodium channel b subunit in the electric organ correlate with variation in a social signal. Dev Neurobiol 67:1289–1304CrossRefGoogle Scholar
  44. Liu H, Wu M, Zakon HH (2008) A novel Na+ channel splice form contributes to the electric fish regulation of an androgen-dependent social signal. J Neurosci 28:9173–9182PubMedPubMedCentralCrossRefGoogle Scholar
  45. Markham MR (2013) Electrocyte physiology: 50 years later. J Exp Biol 216:2451–2458CrossRefGoogle Scholar
  46. Markham MR, Stoddard PK (2005) Adrenocorticotropic hormone enhances the masculinity of an electric communication signal by modulating the waveform and timing of action potentials within individual cells. J Neurosci 25:8746–8754PubMedPubMedCentralCrossRefGoogle Scholar
  47. Markham MR, McAnelly LM, Stoddard PK, Zakon HH (2009a) Circadian and social cues regulate ion channel trafficking. PLoS Biol 7:e1000203PubMedPubMedCentralCrossRefGoogle Scholar
  48. Markham MR, Allee SJ, Goldina A, Stoddard PK (2009b) Melanocortins regulate the electric waveforms of gymnotiform electric fish. Horm Behav 55:306–313CrossRefGoogle Scholar
  49. McAnelly LM, Zakon HH (2007) Androgen modulates the kinetics of the delayed rectifying K current in the electric organ of a weakly electric fish. Dev Neurobiol 67:1589–1597CrossRefGoogle Scholar
  50. Meyer JH, Leong M, Keller CH (1987) Hormone-induced and maturational changes in electric organ discharges and electroreceptor tuning in the weakly electric fish Apteronotus. J Comp Physiol A 160:385–394PubMedCrossRefPubMedCentralGoogle Scholar
  51. Migliaro A, Silva A (2016) Melatonin regulates daily variations in electric behavior arousal in two species of weakly electric fish with different social structures. Brain Behav Evol 87(4):232–241PubMedCrossRefPubMedCentralGoogle Scholar
  52. Mills A, Zakon HH (1987) Coordination of EOD frequency and pulse duration in a weakly electric wave fish: the influence of androgens. J Comp Physiol A 161:417–430CrossRefGoogle Scholar
  53. Mills A, Zakon HH (1991) Chronic androgen treatment increases action potential duration in the electric organ of Sternopygus. J Neurosci 11:2349–2361PubMedPubMedCentralCrossRefGoogle Scholar
  54. Mills A, Zakon HH, Marchaterre M, Bass AH (1992) Electric organ morphology of Sternopygus macrurus, a wave-type, weakly electric fish with a sexually dimorphic EOD. J Neurobiol 23:920–932PubMedCrossRefPubMedCentralGoogle Scholar
  55. Newman SW (1999) The medial extended amygdala in male reproductive behavior. A node in the mammalian social behavior network. Ann N Y Acad Sci 877:242–257PubMedCrossRefPubMedCentralGoogle Scholar
  56. OʼConnell LA, Hofmann HA (2011) The vertebrate mesolimbic reward system and social behavior network: a comparative synthesis. J Comp Neurol 519:3599–3639PubMedCrossRefPubMedCentralGoogle Scholar
  57. Perrone R, Silva A (2018) Status-dependent vasotocin modulation of dominance and subordination in the weakly electric fish Gymnotus omarorum differences. Front Behav Neurosci 12:1PubMedPubMedCentralCrossRefGoogle Scholar
  58. Perrone R, Macadar O, Silva A (2009) Social electric signals in freely moving dyads of Brachyhypopomus pinnicaudatus. J Comp Physiol A 195:501–514CrossRefGoogle Scholar
  59. Perrone R, Batista G, Lorenzo D, Macadar O, Silva A (2010) Vasotocin actions on electric behavior: interspecific, seasonal, and social context-dependent differences. Front Behav Neurosci 4(52)Google Scholar
  60. Perrone R, Pedraja F, Valiño G, Tassino B, Silva A (2019) Non-breeding territoriality and the effect of territory size on aggression in the weakly electric fish, Gymnotus omarorum. Acta Ethol 22:79–89CrossRefGoogle Scholar
  61. Pouso P, Quintana L, Bolatto C, Silva AC (2010) Brain androgen receptor expression correlates with seasonal changes in the behavior of a weakly electric fish, Brachyhypopomus gauderio. Horm Behav 58:729–736PubMedCrossRefPubMedCentralGoogle Scholar
  62. Pouso P, Radmilovich M, Silva A (2017) An immunohistochemical study on the distribution of vasotocin neurons in the brain of two weakly electric fish, Gymnotus omarorum and Brachyhypopomus gauderio. Tissue Cell 49:257–269PubMedCrossRefPubMedCentralGoogle Scholar
  63. Quintana L, Silva A, Berois N, Macadar O (2004) Temperature induces gonadal maturation and affects electrophysiological sexual maturity indicators in Brachyhypopomus pinnicaudatus from a temperate climate. J Exp Biol 207:1843–1853CrossRefGoogle Scholar
  64. Quintana L, Pouso P, Fabbiani G, Macadar O (2011a) A central pacemaker that underlies the production of seasonal and sexually dimorphic social signals: anatomical and electrophysiological aspects. J Comp Physiol A 197:75–88CrossRefGoogle Scholar
  65. Quintana L, Sierra F, Silva A, Macadar O (2011b) A central pacemaker that underlies the production of seasonal and sexually dimorphic social signals: functional aspects revealed by glutamate stimulation. J Comp Physiol A 197:211–225CrossRefGoogle Scholar
  66. Quintana L, Harvey-Girard E, Lescano C, Macadar O, Lorenzo D (2014) Sex-specific role of aglutamate receptor subtype in a pacemaker nucleus controlling electric behavior. J Physiol Paris 108(2–3):155–166PubMedCrossRefPubMedCentralGoogle Scholar
  67. Quintana L, Zubizarreta L, Jalabert C, Batista G, Perrone R, Silva A (2016) Building the case for a novel teleost model of non-breeding aggression and its neuroendocrine control. J Physiol Paris 110:224–232PubMedCrossRefPubMedCentralGoogle Scholar
  68. Semsar K, Kandel FL, Godwin J (2001) Manipulations of the AVT system shift social status and related courtship and aggressive behavior in the bluehead wrasse. Horm Behav 40:21–31PubMedCrossRefPubMedCentralGoogle Scholar
  69. Silva A, Pandolfi M (2018) Vasotocinergic systems in Neotropical fish: from neuroanatomy to agonistic behavior. Gen Comp Endocr 273:67–72Google Scholar
  70. Silva AC, Quintana L, Galeano M, Errandonea P, Macadar O (1999) Water temperature sensitivity of EOD waveform in Brachyhypopomus pinnicaudatus. J Comp Physiol A 185:187–197CrossRefGoogle Scholar
  71. Silva A, Quintana L, Ardanaz JL, Macadar O (2002) Environmental and hormonal influences upon EOD wave form in gymnotiform pulse fish. J Physiol Paris 96:473–484PubMedCrossRefPubMedCentralGoogle Scholar
  72. Silva AC, Quintana L, Galeano M, Errandonea P (2003) Biogeography and breeding in Gymnotiformes from Uruguay. Environ Biol Fish 66:329–338CrossRefGoogle Scholar
  73. Silva A, Perrone R, Macadar O (2007) Environmental, seasonal, and social modulations of basal activity in a weakly electric fish. Physiol Behav 90:525–536PubMedPubMedCentralCrossRefGoogle Scholar
  74. Silva A, Quintana L, Perrone R, Sierra F (2008) Sexual and seasonal plasticity in the emission of social electric signals. Behavioral approach and neural bases. J Physiol Paris 102:272–278PubMedCrossRefPubMedCentralGoogle Scholar
  75. Smith GT (2013) Evolution and hormonal regulation of sex differences in the electrocommunication behavior of ghost knifefishes (Apteronotidae). J Exp Biol 216:2421–2433PubMedPubMedCentralCrossRefGoogle Scholar
  76. Spiro JE (1997) Differential activation of glutamate receptor subtypes on a single class of cells enables a neural oscillator to produce distinct behaviors. J Neurophysiol 78:835–847PubMedCrossRefPubMedCentralGoogle Scholar
  77. Stoddard PK, Markham MR, Salazar VL, Allee S (2007) Circadian rhythms in electric waveform structure and rate in the electric fish Brachyhypopomus pinnicaudatus. Physiol Behav 90:11–20CrossRefGoogle Scholar
  78. Turner CR, Derylo M, de Santana CD, Alves-Gomes JA, Smith GT (2007) Phylogenetic comparative analysis of electric communication signals in ghost knifefishes (Gymnotiformes: Apteronotidae). J Exp Biol 210:4104–4122PubMedPubMedCentralCrossRefGoogle Scholar
  79. Wingfield JC (1994) Regulation of territorial behavior in the sedentary song sparrow, Melospiza melodia morphna. Horm Behav 28(1):1–15PubMedCrossRefPubMedCentralGoogle Scholar
  80. Wingfield JC (2005) A continuing saga: the role of testosterone in aggression. Horm Behav 48:253–255PubMedCrossRefPubMedCentralGoogle Scholar
  81. Zakon HH (2000) Sex steroids and weakly electric fish: a model system for activational mechanisms of hormone action. In: Matsumoto A (ed) Sexual differentiation of the brain. CRC Press, Boca Raton, pp 95–112Google Scholar
  82. Zakon HH, Dunlap K (1999) Sex steroids and communication signals in electric fish electric fish: a tale of two species. Brain Behav Evol 54:61–69PubMedCrossRefPubMedCentralGoogle Scholar
  83. Zakon HH, Yan HY, Thomas P (1990) Human chorionic gonadotropin-induced shifts in the electrosensory system of the weakly electric fish, Sternopygus. J Neurobiol 21:826–833PubMedCrossRefPubMedCentralGoogle Scholar
  84. Zakon HH, Thomas P, Yan HY (1991) Electric organ discharge frequency and plasma sex steroid levels during gonadal recrudescence in a natural population of the weakly electric fish Sternopygus macrurus. J Comp Physiol A 169:493–499PubMedCrossRefPubMedCentralGoogle Scholar
  85. Zakon HH, Oestreich J, Tallarovic S, Triefenbach F (2002) EOD modulations of controlling brown ghost electric fish: JARs, chirps, rises, and dips. J Physiol Paris 96:451–458PubMedPubMedCentralCrossRefGoogle Scholar
  86. Zakon HH, Lu Y, Zwickl DJ, Hillis DM (2006) Sodium channel genes and the evolution of diversity in communication signals of electric fishes: convergent molecular evolution. Proc Natl Acad Sci 103:3675–3680PubMedCrossRefPubMedCentralGoogle Scholar
  87. Zubizarreta L, Perrone R, Stoddard PK, Costa G, Silva AC (2012) Differential serotonergic modulation of two types of aggression in weakly electric fish. Front Behav Neurosci 6:77PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Laboratorio de Neurociencias, Facultad de CienciasUniversidad de la RepúblicaMontevideoUruguay
  2. 2.Unidad Bases Neurales de la Conducta, Departamento de Neurofisiología Celular y MolecularInstituto de Investigaciones Biológicas Clemente EstableMontevideoUruguay

Personalised recommendations