Skip to main content

Electrosensory Transduction: Comparisons Across Structure, Afferent Response Properties, and Cellular Physiology

  • Chapter
  • First Online:
Electroreception: Fundamental Insights from Comparative Approaches

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 70))

Abstract

The first relays of the vertebrate electrosensory system arise from epidermal specializations with voltage-sensitive receptor cells that are tuned to the relevant frequencies of bioelectric fields. Despite diverse phylogenetic origins and adaptations to varying habitats, electroreceptor organs share a number of morphological and functional characteristics to facilitate the detection of low-intensity electric fields. Much of the current knowledge of physiological mechanisms underlying electrosensory transduction has been gleaned from in vivo electrophysiological recordings from primary electrosensory afferents or recordings of electrical impulses from the organs themselves. Recent advances in genetic and patch-clamp electrophysiological techniques have made detailed comparisons of the molecular mechanisms of transduction possible. These comparisons have the potential to shed light on convergent mechanisms of stimulus transduction and filtering among diverse species as well as broad themes of signal transduction relevant to other hair cell-based sensory systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002) Ion channels and the electrical properties of membranes. In: Molecular biology of the cell, 4th edn. Garland Science, New York

    Google Scholar 

  • Alves-Gomes J (2001) The evolution of electroreception and bioelectrogenesis in teleost fish: a phylogenetic perspective. J Fish Biol 58(6):1489–1511

    Article  Google Scholar 

  • Andres KH, von Düring M, Petrasch E (1988) The fine structure of ampullary and tuberous electroreceptors in the South American blind catfish Pseudocetopsis spec. Anat Embryol 177(6):523–535

    Article  CAS  Google Scholar 

  • Andres KH, von Düring M, Iggo A, Proske U (1991) The anatomy and fine structure of the echidna Tachyglossus aculeatus snout with respect to its different trigeminal sensory receptors including the electroreceptors. Anat Embryol 184(4):371–393

    Article  CAS  Google Scholar 

  • Andrianov GN, Bretschneider F, Peters RC (1997) Electrophysiological demonstration of N-methyl-d-aspartate receptors at the afferent synapse of catfish electroreceptor organs. Neuroscience 79(4):1231–1237

    Article  CAS  PubMed  Google Scholar 

  • Asahara M, Koizumi M, Macrini TE, Hand SJ, Archer M (2016) Comparative cranial morphology in living and extinct platypuses: feeding behavior, electroreception, and loss of teeth. Sci Adv 2(10):e1601329

    Article  PubMed  PubMed Central  Google Scholar 

  • Baker CA, Kohashi T, Lyons-Warren AM, Ma X, Carlson BA (2013a) Multiplexed temporal coding of electric communication signals in mormyrid fishes. J Exp Biol 216(13):2365–2379

    Article  PubMed  PubMed Central  Google Scholar 

  • Baker CV, Modrell MS, Gillis JA (2013b) The evolution and development of vertebrate lateral line electroreceptors. J Exp Biol 216(Pt 13):2515–2522

    Article  PubMed  Google Scholar 

  • Bass AH (2016) Hearing and hormones: paying homage to the comparative approach. In: Bass AH, Sisneros JA, Popper AN, Fay RR (eds) Hearing and hormones. Springer International, Cham, pp 1–14

    Chapter  Google Scholar 

  • Bell CC (1990) Mormyromast electroreceptor organs and their afferent fibers in mormyrid fish. II. Intra-axonal recordings show initial stages of central processing. J Neurophysiol 63(2):303–318

    Article  CAS  PubMed  Google Scholar 

  • Bell CC, Grant K (1989) Corollary discharge inhibition and preservation of temporal information in a sensory nucleus of mormyrid electric fish. J Neurosci 9(3):1029–1044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bell CC, Zakon H, Finger TE (1989) Mormyromast electroreceptor organs and their afferent fibers in mormyrid fish: I. Morphology. J Comp Neurol 286(3):391–407

    Article  CAS  PubMed  Google Scholar 

  • Bellono NW, Leitch DB, Julius D (2017) Molecular basis of ancestral vertebrate electroreception. Nature 543:391–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bellono NW, Leitch DB, Julius D (2018) Molecular tuning of electroreception in sharks and skates. Nature 558(7708):122–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bennett MV (1965) Electroreceptors in mormyrids. Cold Spring Harb Symp Quant Biol 30:245–262

    Article  CAS  PubMed  Google Scholar 

  • Bennett MVL (1967) Mechanisms of electroreception. In: Cahn P (ed) Lateral line detectors. Indiana University Press, Bloomington, pp 313–393

    Google Scholar 

  • Bennett MVL (1971) Electroreception. In: Hoar WS, Randall DS (eds) Fish physiology, vol 2. Academic, New York, pp 493–574

    Google Scholar 

  • Bennett MVL, Obara S (1986) Ionic mechanisms and pharmacology of electroreceptors. In: Bullock TH, Heiligenberg W (eds) Electroreception. Wiley, New York, pp 157–181

    Google Scholar 

  • Bennett MVL, Sandri C, Akert K (1989) Fine structure of the tuberous electroreceptor of the high-frequency electric fish, Sternarchus albifrons (gymnotiformes). [journal article]. J Neurocytol 18(2):265–283

    Article  CAS  PubMed  Google Scholar 

  • Bodznick D, Montgomery JC (2005) The physiology of low-frequency electrosensory systems. In: Bullock TH, Hopkins CD, Popper AN, Fay RR (eds) Electroreception. Springer, New York, pp 132–153

    Chapter  Google Scholar 

  • Bratton BO, Ayers JL (1987) Observations on the electric organ discharge of two skate species (Chondrichthyes: Rajidae) and its relationship to behaviour. Environ Biol Fishes 20(4):241–254

    Google Scholar 

  • Brown BR (2003) Sensing temperature without ion channels. Nature 421:495

    Article  CAS  PubMed  Google Scholar 

  • Brown BR (2010) Temperature response in electrosensors and thermal voltages in electrolytes. J Biol Phys 36(2):121–134

    Article  PubMed  Google Scholar 

  • Bullock TH (1982) Electroreception. Ann Rev Neurosci 5:121–170

    Article  CAS  PubMed  Google Scholar 

  • Bullock TH, Bodznick DA, Northcutt RG (1983) The phylogenetic distribution of electroreception: evidence for convergent evolution of a primitive vertebrate sense modality. Brain Res 287(1):25–46

    Article  CAS  PubMed  Google Scholar 

  • Camilieri-Asch V, Kempster RM, Collin SP, Johnstone RW, Theiss SM (2013) A comparison of the electrosensory morphology of a euryhaline and a marine stingray. Zoology 116(5):270–276

    Article  PubMed  Google Scholar 

  • Clusin WT, Bennett MV (1977) Calcium-activated conductance in skate electroreceptors: current clamp experiments. J Gen Physiol 69(2):121–143

    Article  CAS  PubMed  Google Scholar 

  • Clusin WT, Bennett MV (1979a) The ionic basis of oscillatory responses of skate electroreceptors. J Gen Physiol 73(6):703–723

    Article  CAS  PubMed  Google Scholar 

  • Clusin WT, Bennett MV (1979b) The oscillatory responses of skate electroreceptors to small voltage stimuli. J Gen Physiol 73(6):685–702

    Article  CAS  PubMed  Google Scholar 

  • Czech-Damal NU, Liebschner A, Miersch L, Klauer G, Hanke FD, Marshall C, Dehnhardt G, Hanke W (2011) Electroreception in the Guiana dolphin Sotalia guianensis. Proc Royal Soc B 279(1729):663–668

    Google Scholar 

  • Czech-Damal NU, Dehnhardt G, Manger P, Hanke W (2013) Passive electroreception in aquatic mammals. J Comp Physiol A 199(6):555–563

    Article  Google Scholar 

  • de Gurjao LM, de Andrade Furtado Necto MA, dos Santos RA, Cascon P (2003) Feeding habits of marine tucuxi, Sotalia fluviatilis, at Ceara state, northeastern Brazil. LAJAM 2:117–122

    Article  Google Scholar 

  • Doyle J (1967) The ‘Lorenzan sulphates’. A new group of vertebrate mucopolysaccharides. Biochem J 103(2):325–330

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fields RD, Ellisman MH (1985) Synaptic morphology and differences in sensitivity. Science 228(4696):197–199

    Article  CAS  PubMed  Google Scholar 

  • Fields RD, Ellisman MH, Waxman SG (1987) Changes in synaptic morphology associated with presynaptic and postsynaptic activity: an in vitro study of the electrosensory organ of the thornback ray. Synapse 1(4):335–346

    Article  CAS  PubMed  Google Scholar 

  • Fields RD, Bullock TH, Lange GD (1993) Ampullary sense organs, peripheral, central and behavioral electroreception in chimeras (Hydrolagus, Holocephali, Chondrichthyes). Brain Behav Evol 41(6):269–289

    Article  CAS  PubMed  Google Scholar 

  • Fields RD, Fields KD, Fields MC (2007) Semiconductor gel in shark sense organs? Neurosci Lett 426(3):166–170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fodor AA, Aldrich RW (2009) Convergent evolution of alternative splices at domain boundaries of the BK Channel. Annu Rev Physiol 71(1):19–36

    Article  CAS  PubMed  Google Scholar 

  • Fritzsch B, Wahnschaffe U (1983) The electroreceptive ampullary organs of urodeles. Cell Tissue Res 229(3):483–503

    Article  CAS  PubMed  Google Scholar 

  • Gallant JR, Traeger LL, Volkening JD, Moffett H, Chen P-H, Novina CD, Phillips GN, Anand R, Wells GB, Pinch M (2014) Genomic basis for the convergent evolution of electric organs. Science 344(6191):1522–1525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gauthier ARG, Whitehead DL, Tibbetts IR, Cribb BW, Bennett MB (2018) Morphological comparison of the ampullae of Lorenzini of three sympatric benthic rays. J Fish Biol 92(2):504–514

    Article  CAS  PubMed  Google Scholar 

  • Gillis JA, Modrell MS, Northcutt RG, Catania KC, Luer CA, Baker CV (2012) Electrosensory ampullary organs are derived from lateral line placodes in cartilaginous fishes. Development 139(17):3142–3146

    Article  CAS  PubMed  Google Scholar 

  • Gregory J, Iggo A, McIntyre A, Proske U (1989) Responses of electroreceptors in the snout of the echidna. J Physiol 414(1):521–538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harris LL, Bedore CN, Kajiura SM (2015) Electroreception in the obligate freshwater stingray, Potamotrygon motoro. Mar Freshwat Res 66(11):1027–1036

    Article  Google Scholar 

  • Heiligenberg W (1991) Neural nets in electric fish. MIT Press, Cambridge

    Google Scholar 

  • Himstedt W, Kopp J, Schmidt W (1982) Electroreception guides feeding behavior in amphibians. Naturwissenschaften 69(552):552–553

    Article  Google Scholar 

  • Hopkins C, Bass A (1981) Temporal coding of species recognition signals in an electric fish. Science 212(4490):85–87

    Article  CAS  PubMed  Google Scholar 

  • Hudspeth AJ (2005) How the ear’s works work: mechanoelectrical transduction and amplification by hair cells. C R Biol 328(2):155–162

    Article  CAS  PubMed  Google Scholar 

  • Jorgensen JM (2005) Morphology of electroreceptive sensory organs. In: Bullock TH, Hopkins CD, Popper AN, Fay RR (eds) Electroreception. Springer, New York, pp 47–67

    Chapter  Google Scholar 

  • Josberger EE, Hassanzadeh P, Deng Y, Sohn J, Rego MJ, Amemiya CT, Rolandi M (2016) Proton conductivity in ampullae of Lorenzini jelly. Sci Adv 2(5):e1600112

    Article  PubMed  PubMed Central  Google Scholar 

  • Kajiura SM, Holland KN (2002) Electroreception in juvenile scalloped hammerhead and sandbar sharks. J Exp Biol 205(23):3609–3621

    PubMed  Google Scholar 

  • Kalmijn AJ (1971) The electric sense of sharks and rays. J Exp Biol 55(2):371–383

    CAS  PubMed  Google Scholar 

  • Kalmijn AJ (1974) The detection of electric fields from inanimate & animate sources other than electric organs. In: Fessard A (ed) Handbook of sensory physiology 111/3: Electroreceptors and other specialized receptors in lower vertebrates. Springer-Verlag, Berlin, Heidelberg, New York, pp 147–200

    Google Scholar 

  • Kalmijn AJ (1982) Electric and magnetic field detection in elasmobranch fishes. Science 218(4575):916–918

    Article  CAS  PubMed  Google Scholar 

  • Kalmijn AJ (1987) Detection of weak electric fields. In: Atema J, Fay RR, Popper AN, Tavogla WN (eds) Sensory biology of aquatic animals. Springer, New York, pp 151–186

    Google Scholar 

  • Kawasaki M (2005) Physiology of tuberous electrosensory systems. In: Bullock TH, Hopkins CD (eds) Electroreception. Springer, New York, pp 154–194

    Chapter  Google Scholar 

  • Keller CH (2004) Electroreception: strategies for separation of signals from noise. In: von der Emde G, Mogdans J, Kapoor BG (eds) The senses of fish: adaptations for the reception of natural stimuli. Springer Netherlands, Dordrecht, pp 330–361

    Chapter  Google Scholar 

  • Kempster RM, Hart NS, Collin SP (2013a) Survival of the stillest: predator avoidance in shark embryos. PLoS One 8(1):e52551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kempster RM, Garza-Gisholt E, Egeberg CA, Hart NS, O’Shea OR, Collin SP (2013b) Sexual dimorphism of the electrosensory system: a quantitative analysis of nerve axons in the dorsal anterior lateral line nerve of the blue-spotted Fantail Stingray (Taeniura lymma). Brain Behav Evol 81(4):226–235

    Article  CAS  PubMed  Google Scholar 

  • King BL, Shi LF, Kao P, Clusin WT (2016) Calcium activated K+ channels in the electroreceptor of the skate confirmed by cloning. Details of subunits and splicing. Gene 578(1):63–73

    Article  CAS  PubMed  Google Scholar 

  • Loewenstein WR, Ishiko N (1962) Sodium chloride sensitivity and electrochemical effects in a Lorenzinian ampulla. Nature 194:292–294

    Article  CAS  PubMed  Google Scholar 

  • Lu J, Fishman HM (1994a) Interaction of apical and basal membrane ion channels underlies electroreception in ampullary epithelia of skates. Biophys J 67(4):1525–1533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu J, Fishman HM (1994b) Operational properties of voltage-clamped electroreceptive ampullary organ excised from Raja. Biol Bull 187(2):257–258

    Article  CAS  PubMed  Google Scholar 

  • Lu J, Fishman HM (1995a) Localization and function of the electrical oscillation in electroreceptive ampullary epithelium from skates. Biophys J 69(6):2458–2466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu J, Fishman HM (1995b) Ion channels and transporters in the electroreceptive ampullary epithelium from skates. Biophys J 69(6):2467–2475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manger PR, Pettigrew JD (1996) Ultrastructure, number, distribution and innervation of electroreceptors and mechanoreceptors in the bill skin of the platypus, Ornithorhynchus anatinus. Brain Behav Evol 48(1):27–54

    Article  CAS  PubMed  Google Scholar 

  • Matthews G, Fuchs P (2010) The diverse roles of ribbon synapses in sensory neurotransmission. Nat Rev Neurosci 11:812–822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCormick CA (1982) The organization of the octavolateralis area in actinopterygian fishes: a new interpretation. J Morphol 171(2):159–181

    Article  PubMed  Google Scholar 

  • McGowan DW, Kajiura SM (2009) Electroreception in the euryhaline stingray, Dasyatis sabina. J Exp Biol 212(10):1544–1552

    Article  CAS  PubMed  Google Scholar 

  • Modrell MS, Bemis WE, Northcutt RG, Davis MC, Baker CV (2011) Electrosensory ampullary organs are derived from lateral line placodes in bony fishes. Nat Commun 2:496

    Article  PubMed  CAS  Google Scholar 

  • Modrell MS, Lyne M, Carr AR, Zakon HH, Buckley D, Campbell AS, Davis MC, Micklem G, Baker CVH (2017) Insights into electrosensory organ development, physiology and evolution from a lateral line-enriched transcriptome. elife 6:e24197

    Article  PubMed  PubMed Central  Google Scholar 

  • Murray RW (1962) The response of the ampullae of Lorenzini of elasmobranchs to electrical stimulation. J Exp Biol 39(1):119–128

    CAS  PubMed  Google Scholar 

  • Murray RW (1965) Electroreceptor mechanisms: the relation of impulse frequency to stimulus strength and responses to pulsed stimuli in the ampullae of Lorenzini of elasmobranchs. J Physiol 180(3):592–606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murray R, Potts W (1961) The composition of the endolymph, perilymph, and other body fluids of elasmobranchs. Comp Biochem Physiol 2(1):65–75

    Article  CAS  Google Scholar 

  • New JG (1997) The evolution of vertebrate electrosensory systems. Brain Behav Evol 50(4):244–252

    Article  CAS  PubMed  Google Scholar 

  • Northcutt RG (1980) Anatomical evidence of electroreception in the Coelacanth (Latimeria chalumnae). Anat Histol Embryol 9(4):289–295

    Article  CAS  PubMed  Google Scholar 

  • Northcutt RG (1997) Evolution of gnathostome lateral line ontogenies. Brain Behav Evol 50(1):25–37

    Article  CAS  PubMed  Google Scholar 

  • Obara S (1976) Mechanisms of electroreception in ampullae of Lorenzini of the marine catfish Plotosus. In: Reuben JP, Purpura DP, Bennett MVL, Kandel ER (eds) Electrobiology of nerve, synapse and muscle. Raven, New York, pp 128–147

    Google Scholar 

  • Peters RC, Dénizot J-P (2004) Miscellaneous features of electroreceptors in Gnathonemus petersii (Gunther, 1862)(Pisces, Teleostei, Mormyriformes). Belg J Zool 134(2/1):61–66

    Google Scholar 

  • Peters RC, Denizot JP (2004) Transduction and transmission in electroreceptor organs. In: Frings S, Bradley J (eds) Transduction channels in sensory cells. Wiley-VCH, Weinheim, pp 271–298

    Google Scholar 

  • Pettigrew JD (1999) Electroreception in monotremes. J Exp Biol 202(10):1447–1454

    CAS  PubMed  Google Scholar 

  • Raschi W (1986) A morphological analysis of the ampullae of Lorenzini in selected skates (Pisces, Rajoidei). J Morphol 189(3):225–247

    Article  PubMed  Google Scholar 

  • Rose GJ (2004) Insights into neural mechanisms and evolution of behaviour from electric fish. Nat Rev Neurosci 5(12):943–951

    Article  CAS  PubMed  Google Scholar 

  • Russell IJ, Sellick PM (1976) Measurement of potassium and chloride ion concentrations in the cupulae of the lateral lines of Xenopus laevis. J Physiol 257(1):245–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sisneros JA, Tricas TC (2002) Neuroethology and life history adaptations of the elasmobranch electric sense. J Physiol Paris 96(5–6):379–389

    Article  CAS  PubMed  Google Scholar 

  • Sisneros JA, Tricas TC, Luer CA (1998) Response properties and biological function of the skate electrosensory system during ontogeny. J Comp Physiol A 183(1):87–99

    Article  CAS  PubMed  Google Scholar 

  • Steinbach AB, Bennett MV (1971) Effects of divalent ions and drugs on synaptic transmission in phasic electroreceptors in a mormyrid fish. J Gen Physiol 58(5):580–598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Struik ML (2001) A study on transduction in catfish ampullary electroreceptor organs Neuroethology. Utrecht University, Utrecht

    Google Scholar 

  • Sugawara Y (1989a) Electrogenic Na-K pump at the basal face of the sensory epithelium in thePlotosus electroreceptor. J Comp Physiol A 164(5):589–596

    Article  Google Scholar 

  • Sugawara Y (1989b) Two Ca current components of the receptor current in the electroreceptors of the marine catfish Plotosus. J Gen Physiol 93(2):365–380

    Article  CAS  PubMed  Google Scholar 

  • Sugawara Y (1993) Calcium-permeable channels in the isolated electroreceptor cells of Plotosus. Paper presented at the Contributions of electrosensory systems to neurobiology and neuroethology

    Google Scholar 

  • Sugawara Y, Obara S (1984a) Ionic currents in the sensory epithelium examined in isolated electroreceptors of Plotosus under simulated in situ conditions. Brain Res 302(1):176–179

    Article  CAS  PubMed  Google Scholar 

  • Sugawara Y, Obara S (1984b) Damped oscillation in the ampullary electroreceptors of Plotosus involves Ca-activated transient K conductance in the basal membrane of receptor cells. Brain Res 302(1):171–175

    Article  CAS  PubMed  Google Scholar 

  • Szabo T (1965) Sense organs of the lateral line system in some electric fish of the Gymnotidae, Mormyridae and Gymnarchidae. J Morphol 117(2):229–249

    Article  CAS  PubMed  Google Scholar 

  • Szabo T (1967) Activity of peripheral and central neurons involved in electroreception. In: Cahn PH (ed) Lateral line detectors. Indiana University Press, Bloomington, pp 295–311

    Google Scholar 

  • Szabo T (1974) Anatomy of the specialized lateral line organs of electroreception. In: Electroreceptors and other specialized receptors in lower vertrebrates. Springer, Berlin, Heidelberg, pp 13–58

    Chapter  Google Scholar 

  • Szabo T, Wersäll J (1970) Ultrastructure of an electroreceptor (mormyromast) in a mormyrid fish, Gnathonemus petersii. II. J Ultrastruct Res 30(5):473–490

    Article  CAS  PubMed  Google Scholar 

  • Szabo T, Kalmijn AJ, Enger PS, Bullock TH (1972) Microampullary organs and a submandibular sense organ in the fresh water ray, Potamotrygon. J Comp Physiol 79:15–27

    Article  Google Scholar 

  • Szamier RB, Bennett MVL (1980) Ampullary electroreceptors in the fresh water ray,Potamotrygon. J Comp Physiol 138(3):225–230

    Article  Google Scholar 

  • Teeter JH, Bennett MVL (1981) Synaptic transmission in the ampullary electroreceptor of the transparent catfish, Kryptopterus. J Comp Physiol 142(3):371–377

    Article  CAS  Google Scholar 

  • Teeter JH, Szamier RB, Bennett MVL (1980) Ampullary electroreceptors in the sturgeon Scaphirhynchus platorynchus (rafinesque). J Comp Physiol 138(3):213–223

    Article  Google Scholar 

  • Thomson KS (1977) On the individual history of cosmine and a possible electroreceptive function of the pore-canal system in fossil fishes. In: Andrews SM, Miles RS, Walker AD (eds) Problems in vertebrate evolution. Academic, New York, pp 247–272

    Google Scholar 

  • Tricas TC (1982) Bioelectric-mediated predation by swell sharks, Cephaloscyllium ventriosum. Copeia 4:948–952

    Article  Google Scholar 

  • Tricas TC (2001) The neuroecology of the elasmobranch electrosensory world: why peripheral morphology shapes behavior. Environ Biol Fishes 60:77–92

    Article  Google Scholar 

  • Tricas TC, Carlson BA (2012) Electroreceptors and magnetoreceptors. In: Kaneshiro E (ed) Cell physiology sourcebook: essentials of membrane biophysics. Elsevier, Amsterdam, Boston, Heidelberg, London, pp 705–725

    Chapter  Google Scholar 

  • Tricas T, New J (1997) Sensitivity and response dynamics of elasmobranch electrosensory primary afferent neurons to near threshold fields. J Comp Physiol A 182(1):89–101

    Article  Google Scholar 

  • Tricas TC, Sisneros JA (2004) Ecological functions and adaptations of the elasmobranch electrosense. In: von der Emde G, Mogdans J, Kapoor BG (eds) The senses of fish: adaptations for the reception of natural stimuli. Springer Netherlands, Dordrecht, pp 308–329

    Chapter  Google Scholar 

  • Tricas TC, Michael SW, Sisneros JA (1995) Electrosensory optimization to conspecific phasic signals for mating. Neurosci Lett 202(1–2):129–132

    Article  CAS  PubMed  Google Scholar 

  • Wachtel AW, Szamier RB (1966) Special cutaneous receptor organs of fish: the tuberous organs of Eigenmannia. J Morphol 119(1):51–80

    Article  Google Scholar 

  • Waltman B (1965) Electrical properties of the ampullary canals of Lorenzini in Raia. Acta Physiol Scand 66:5–28

    Google Scholar 

  • Wang B, Hu B, Yang S (2015) Cell junction proteins within the cochlea: a review of recent research. J Otol 10(4):131–135

    Article  PubMed  Google Scholar 

  • Webb JF, Northcutt RG (1997) Morphology and distribution of pit organs and canal neuromasts in non-teleost bony fishes. Brain Behav Evol 50(3):139–151

    Article  CAS  PubMed  Google Scholar 

  • Whitehead DL, Gauthier ARG, Mu EWH, Bennett MB, Tibbetts IR (2015) Morphology of the ampullae of Lorenzini in juvenile freshwater Carcharhinus leucas. J Morphol 276(5):481–493

    Article  PubMed  Google Scholar 

  • Zakon H (1984) The ionic basis of the oscillatory receptor potential of tuberous electroreceptors in Sternopygus. Soc Neurosci Abst 10:193

    Google Scholar 

  • Zakon HH (1986) The electroreceptive periphery. In: Bullock TH, Heiligenberg W (eds) Electroreception. Wiley, New York, pp 103–156

    Google Scholar 

  • Zhang X, Xia K, Lin L, Zhang F, Yu Y, St. Ange K, Han X, Edsinger E, Sohn J, Linhardt RJ (2018) Structural and functional components of the skate sensory organ ampullae of Lorenzini. ACS Chem Biol 13(6):1677–1685

    Article  CAS  PubMed  Google Scholar 

  • Zipser B, Bennett MVL (1973) Tetrodotoxin resistant electrically excitable responses of receptor cells. Brain Res 62(1):253–259

    Article  CAS  PubMed  Google Scholar 

  • Zipser B, Bennett MV (1976) Responses of cells of posterior lateral line lobe to activation of electroreceptors in a mormyrid fish. J Neurophysiol 39(4):693–712

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the editors for the invitation to write this chapter and for their thoughtful comments and Dr. Nicholas Bellono for his careful and critical discussion of this manuscript.

Compliance with Ethics Requirements

Duncan B. Leitch declares that he has no conflict of interest.

David Julius declares that he has no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duncan B. Leitch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Leitch, D.B., Julius, D. (2019). Electrosensory Transduction: Comparisons Across Structure, Afferent Response Properties, and Cellular Physiology. In: Carlson, B., Sisneros, J., Popper, A., Fay, R. (eds) Electroreception: Fundamental Insights from Comparative Approaches. Springer Handbook of Auditory Research, vol 70. Springer, Cham. https://doi.org/10.1007/978-3-030-29105-1_3

Download citation

Publish with us

Policies and ethics