Advertisement

Evolution of Submillisecond Temporal Coding in Vertebrate Electrosensory and Auditory Systems

  • Bruce A. CarlsonEmail author
Chapter
Part of the Springer Handbook of Auditory Research book series (SHAR, volume 70)

Abstract

The ability to detect submillisecond differences in the arrival times of stimuli at different sensory receptors has evolved independently in multiple clades. Auditory and electrosensory systems across vertebrates provide well-studied examples of how specialized sensory pathways are able to achieve such extreme temporal sensitivity. These circuits share a remarkable number of similarities at the cellular and synaptic levels of organization despite serving different sensory modalities and despite arising from multiple independent evolutionary origins. This points to a degree of predictability in neural circuit evolution and to the power of natural selection in driving evolutionary change to neural circuits to solve a specific behavioral problem. However, these similar cellular and synaptic building blocks are used to construct different circuit solutions to this behavioral problem in different clades. These differences likely reflect some combination of chance, evolutionary history, and adaptation. Importantly, these differences also make it clear that discoveries in one organism cannot be extrapolated to other organisms, highlighting the importance of comparative approaches in addressing general problems in neuroscience.

Keywords

Anticoincidence detection Calyx Coincidence detection Convergent evolution Delay line Electric organ discharge Electroreceptor Interaural time difference Jamming avoidance response Jeffress model Neural code Phase locking Sound localization 

Notes

Acknowledgments

This work was supported by Grants IOS-1050701, IOS-1255396, and IOS-1755071 from the National Science Foundation.

Compliance with Ethics Requirements

Bruce A. Carlson declares that he has no conflict of interest.

References

  1. Ashida G, Carr CE (2011) Sound localization: Jeffress and beyond. Curr Opin Neurobiol 21(5):745–751PubMedPubMedCentralCrossRefGoogle Scholar
  2. Averbeck BB, Latham PE, Pouget A (2006) Neural correlations, population coding and computation. Nat Rev Neurosci 7:358–366PubMedCrossRefGoogle Scholar
  3. Baker CA, Huck K, Carlson BA (2015) Peripheral sensory coding through oscillatory synchrony in weakly electric fish. elife 4:e08163PubMedPubMedCentralCrossRefGoogle Scholar
  4. Baker CA, Kohashi T, Lyons-Warren AM, Ma X, Carlson BA (2013) Multiplexed temporal coding of electric communication signals in mormyrid fishes. J Exp Biol 216:2365–2379PubMedPubMedCentralCrossRefGoogle Scholar
  5. Beckius GE, Batra R, Oliver DL (1999) Axons from anteroventral cochlear nucleus that terminate in medial superior olive of cat: observations related to delay lines. J Neurosci 19:3146–3161PubMedPubMedCentralCrossRefGoogle Scholar
  6. Bell CC (1986) Electroreception in mormyrid fish: central physiology. In: Bullock TH, Heiligenberg W (eds) Electroreception. Wiley, New York, pp 423–452Google Scholar
  7. Bell CC, Grant K (1989) Corollary discharge inhibition and preservation of temporal information in a sensory nucleus of mormyrid electric fish. J Neurosci 9(3):1029–1044PubMedPubMedCentralCrossRefGoogle Scholar
  8. Bell CC, Szabo T (1986) Electroreception in mormyrid fish: central anatomy. In: Bullock TH, Heiligenberg W (eds) Electroreception. John Wiley & Sons, New York, pp 375–421Google Scholar
  9. Bennett MVL (1965) Electroreceptors in mormyrids. Cold Spring Harb Symp Quant Biol 30:245–262PubMedPubMedCentralCrossRefGoogle Scholar
  10. Bennett MVL (1971) Electroreception. In: Hoar WS, Randall DJ (eds) Fish physiology, vol 5. Academic, London, pp 493–574Google Scholar
  11. Brand A, Behrend O, Marquardt T, McAlpine D, Grothe B (2002) Precise inhibition is essential for microsecond interaural time difference coding. Nature 417:543–547PubMedCrossRefGoogle Scholar
  12. Brenowitz EA, Zakon HH (2015) Emerging from the bottleneck: benefits of the comparative approach to modern neuroscience. Trends Neurosci 38:273–278PubMedPubMedCentralCrossRefGoogle Scholar
  13. Brown MR, Kaczmarek LK (2011) Potassium channel modulation and auditory processing. Hear Res 279:32–42PubMedPubMedCentralCrossRefGoogle Scholar
  14. Brughera A, Dunai L, Hartmann WM (2013) Human interaural time difference thresholds for sine tones: the high-frequency limit. J Acoust Soc Am 133:2839–2855PubMedPubMedCentralCrossRefGoogle Scholar
  15. Bullock TH, Behrend K, Heiligenberg W (1975) Comparison of the jamming avoidance responses in gymnotoid and gymnarchid electric fish: a case of convergent evolution of behavior and its sensory basis. J Comp Physiol 103(1):97–121CrossRefGoogle Scholar
  16. Burger RM, Fukui I, Ohmori H, Rubel EW (2011) Inhibition in the balance: binaurally coupled inhibitory feedback in sound localization circuitry. J Neurophysiol 106:4–14PubMedPubMedCentralCrossRefGoogle Scholar
  17. Carlson BA (2002) Electric signaling behavior and the mechanisms of electric organ discharge production in mormyrid fish. J Physiol Paris 96(5–6):405–419PubMedCrossRefGoogle Scholar
  18. Carlson BA (2008) Phantoms in the brain: Ambiguous representations of stimulus amplitude and timing in weakly electric fish. J Physiol Paris 102:209–222CrossRefGoogle Scholar
  19. Carlson BA (2012) Diversity matters: the importance of comparative studies and the potential for synergy between neuroscience and evolutionary biology. Arch Neurol 69:987–993PubMedPubMedCentralCrossRefGoogle Scholar
  20. Carlson BA, Kawasaki M (2007) Behavioral responses to jamming and ‘phantom’ jamming stimuli in the weakly electric fish Eigenmannia. J Comp Physiol A 193:927–941CrossRefGoogle Scholar
  21. Carlson BA, Gallant JR (2013) From sequence to spike to spark: Evo-devo-neuroethology of electric communication in mormyrid fishes. J Neurogenetics 27:106–129PubMedCrossRefGoogle Scholar
  22. Carlson BA, Hasan SM, Hollmann M, Miller DB, Harmon LJ, Arnegard ME (2011) Brain evolution triggers increased diversification of electric fishes. Science 332:583–586PubMedPubMedCentralCrossRefGoogle Scholar
  23. Carr CE (1993) Processing of temporal information in the brain. Annu Rev Neurosci 16:223–243PubMedCrossRefGoogle Scholar
  24. Carr CE (2004) Timing is everything: organization of timing circuits in auditory and electrical sensory systems. J Comp Neurol 472:131–133PubMedPubMedCentralCrossRefGoogle Scholar
  25. Carr CE, Boudreau RE (1991) Central projections of auditory nerve fibers in the barn owl. J Comp Neurol 314:306–318PubMedCrossRefGoogle Scholar
  26. Carr CE, Boudreau RE (1993) Organization of the nucleus magnocellularis and the nucleus laminaris in the barn owl: encoding and measuring interaural time differences. J Comp Neurol 334:337–355PubMedCrossRefGoogle Scholar
  27. Carr CE, Friedman MA (1999) Evolution of time coding systems. Neural Comput 11(1):1–20PubMedCrossRefGoogle Scholar
  28. Carr CE, Heiligenberg W, Rose GJ (1986a) A time-comparison circuit in the electric fish Eigenmannia midbrain I. Behavior and physiology. J Neurosci 6(1):107–119PubMedPubMedCentralCrossRefGoogle Scholar
  29. Carr CE, Konishi M (1988) Axonal delay lines for time measurement in the owl's brainstem. Proc Natl Acad Sci USA 85:8311–8315PubMedCrossRefGoogle Scholar
  30. Carr CE, Konishi M (1990) A circuit for detection of interaural time differences in the brain stem of the barn owl. J Neurosci 10:3227–3246PubMedPubMedCentralCrossRefGoogle Scholar
  31. Carr CE, Maler L (1986) Electroreception in gymnotiform fish: central anatomy and physiology. In: Bullock TH, Heiligenberg W (eds) Electroreception. John Wiley & Sons, New York, pp 319–373Google Scholar
  32. Carr CE, Maler L, Taylor B (1986b) A time-comparison circuit in the electric fish Eigenmannia midbrain II. Functional morphology. J Neurosci 6(5):1372–1383PubMedPubMedCentralCrossRefGoogle Scholar
  33. Carr CE, Shah S, McColgan T, Ashida G, Kuokkanen PT, Brill S, Kempter R, Wagner H (2015) Maps of interaural delay in the owl’s nucleus laminaris. J Neurophysiol 114:1862–1873PubMedPubMedCentralCrossRefGoogle Scholar
  34. Carr CE, Soares D (2002) Evolutionary convergence and shared computational principles in the auditory system. Brain Behav Evol 59(5–6):294–311PubMedCrossRefGoogle Scholar
  35. Carr CE, Soares D, Parameshwaran S, Perney T (2001) Evolution and development of time coding systems. Curr Opin Neurobiol 11(6):727–733PubMedCrossRefGoogle Scholar
  36. Carr CE, Soares D, Smolders J, Simon JZ (2009) Detection of interaural time differences in the alligator. J Neurosci 29(25):7978–7982PubMedPubMedCentralCrossRefGoogle Scholar
  37. Christensen-Dalsgaard J, Carr CE (2008) Evolution of a sensory novelty: tympanic ears and the associated neural processing. Brain Res Bull 75:365–370PubMedCrossRefGoogle Scholar
  38. Clack JA (1997) The evolution of tetrapod ears and the fossil record. Brain Behav Evol 50:198–212PubMedCrossRefGoogle Scholar
  39. Fischl MJ, Burger RM, Schmidt-Pauly M, Alexandrova O, Sinclair JL, Grothe B, Forsythe ID, Kopp-Scheinpflug C (2016) Physiology and anatomy of neurons in the medial superior olive of the mouse. J Neurophysiol 116:2676–2688PubMedPubMedCentralCrossRefGoogle Scholar
  40. Ford MC, Alexandrova O, Cossell L, Stange-Marten A, Sinclair J, Kopp-Scheinpflug C, Pecka M, Attwell D, Grothe B (2015) Tuning of Ranvier node and internode properties in myelinated axons to adjust action potential timing. Nat Commun 6:8073PubMedPubMedCentralCrossRefGoogle Scholar
  41. Franken TP, Roberts MT, Wei L, Golding NL, Joris PX (2015) In vivo coincidence detection in mammalian sound localization generates phase delays. Nat Neurosci 18:444–452PubMedPubMedCentralCrossRefGoogle Scholar
  42. Friedman MA, Hopkins CD (1998) Neural substrates for species recognition in the time-coding electrosensory pathway of mormyrid electric fish. J Neurosci 18(3):1171–1185PubMedPubMedCentralCrossRefGoogle Scholar
  43. Friedman MA, Kawasaki M (1997) Calretinin-like immunoreactivity in mormyrid and gymnarchid electrosensory and electromotor systems. J Comp Neurol 387(3):341–357PubMedCrossRefGoogle Scholar
  44. Grothe B (2000) The evolution of temporal processing in the medial superior olive, an auditory brainstem structure. Prog Neurobiol 61:581–610PubMedCrossRefGoogle Scholar
  45. Grothe B (2003) New roles for synaptic inhibition in sound localization. Nat Rev Neurosci 4:1–11CrossRefGoogle Scholar
  46. Grothe B, Klump GM (2000) Temporal processing in sensory systems. Curr Opin Neurobiol 10(4):467–473PubMedCrossRefGoogle Scholar
  47. Grothe B, Pecka M (2014) The natural history of sound localization in mammals – a story of neuronal inhibition. Front Neural Circuits 8:116PubMedPubMedCentralCrossRefGoogle Scholar
  48. Grothe B, Pecka M, McAlpine D (2010) Mechanisms of sound localization in mammals. Physiol Rev 90:983–1012PubMedCrossRefGoogle Scholar
  49. Harder W (1968) Die beziehungen zwischen elektrorezeptoren, elektrischem organ, seitenlinienorganen und nervensystem bei den Mormyridae (Teleostei, Pisces). Z Vergl Physiol 59:272–318Google Scholar
  50. Harper NS, McAlpine D (2004) Optimal neural population coding of an auditory spatial cue. Nature 430:682–686PubMedCrossRefGoogle Scholar
  51. Harrison JM, Warr WB (1962) A study of the cochlear nuclei and ascending auditory pathways of the medulla. J Comp Neurol 119:341–380PubMedCrossRefGoogle Scholar
  52. Heiligenberg W (1991) Neural nets in electric fish, Computational Neuroscience Series. MIT Press, CambridgeGoogle Scholar
  53. Heiligenberg WF, Rose G (1985) Phase and amplitude computations in the midbrain of an electric fish: intracellular studies of neurons participating in the jamming avoidance response of Eigenmannia. J Neurosci 5(2):515–531PubMedPubMedCentralCrossRefGoogle Scholar
  54. Hopkins CD (1986a) Behavior of Mormyridae. In: Bullock TH, Heiligenberg W (eds) Electroreception. Wiley, New York, pp 527–576Google Scholar
  55. Hopkins CD (1986b) Temporal structure of non-propagated electric communication signals. Brain Behav Evol 28(1–3):43–59PubMedPubMedCentralCrossRefGoogle Scholar
  56. Hopkins CD, Bass AH (1981) Temporal coding of species recognition signals in an electric fish. Science 212(4490):85–87PubMedPubMedCentralCrossRefGoogle Scholar
  57. Irvine DRF (1992) Physiology of the auditory brainstem. In: Popper AN, Fay RR (eds) The mammalian auditory pathway: neurophysiology, Springer Handbook of Auditory Research, vol 2. Springer, New York, NYGoogle Scholar
  58. Jeffress LA (1948) A place theory of sound localization. J Comp Physiol Psychol 41:35–39PubMedCrossRefGoogle Scholar
  59. Jercog PE, Svirskis G, Kotak VC, Sanes DH, Rinzel J (2010) Asymmetric excitatory synaptic dynamics underlie interaural time difference processing in the auditory system. PLoS Biol 8(6):1–9CrossRefGoogle Scholar
  60. Joris PX, van de Sande B, Louage DH, van der Heijden M (2006) Binaural and cochlear disparities. Proc Natl Acad Sci USA 103:12917–12922PubMedCrossRefGoogle Scholar
  61. Kapfer C, Seidl AH, Schweizer H, Grothe B (2002) Experience-dependent refinement of inhibitory inputs to auditory coincidence-detector neurons. Nat Neurosci 5:247–253PubMedCrossRefGoogle Scholar
  62. Karino S, Smith PH, Yin TCT, Joris PX (2011) Axonal branching patterns as sources of delay in the mammalian auditory brainstem: a re-examination. J Neurosci 31:3016–3031PubMedPubMedCentralCrossRefGoogle Scholar
  63. Katz PS (2016) ‘Model organisms’ in the light of evolution. Curr Biol 26:R641–R666CrossRefGoogle Scholar
  64. Kawasaki M (1993) Independently evolved jamming avoidance responses employ identical computational algorithms: a behavioral study of the African electric fish, Gymnarchus niloticus. J Comp Physiol A 173(1):9–22PubMedCrossRefGoogle Scholar
  65. Kawasaki M (1997) Sensory hyperacuity in the jamming avoidance response of weakly electric fish. Curr Opin Neurobiol 7(4):473–479PubMedCrossRefGoogle Scholar
  66. Kawasaki M (2009) Evolution of time-coding systems in weakly electric fishes. Zool Sci 26:587–599PubMedPubMedCentralCrossRefGoogle Scholar
  67. Kawasaki M, Guo Y (1996) Neuronal circuitry for comparison of timing in the electrosensory lateral line lobe of the African wave-type electric fish Gymnarchus niloticus. J Neurosci 16(1):380–391PubMedPubMedCentralCrossRefGoogle Scholar
  68. Kiang NYS, Watanabe T, Thomas EC, Clark EF (1965) Discharge patterns of single fibers in the Cat’s auditory nerve. The MIT Press, Cambridge, MAGoogle Scholar
  69. Klumpp R, Eady H (1956) Some measurements of interaural time difference thresholds. J Acoust Soc Am 28:215–232CrossRefGoogle Scholar
  70. Knudsen EI, Blasdel GG, Konishi M (1979) Sound localization in by the barn owl (Tyto alba) measured with the search coil technique. J Comp Physiol 133:1–11CrossRefGoogle Scholar
  71. Köppl C (1997) Phase locking to high frequencies in the auditory nerve and cochlear nucleus magnocellularis of the barn owl, Tyto alba. J Neurosci 17(9):3312–3321PubMedPubMedCentralCrossRefGoogle Scholar
  72. Köppl C, Carr CE (2008) Maps of interaural time difference in the chicken’s brainstem nucleus laminaris. Biol Cybern 98:541–559PubMedPubMedCentralCrossRefGoogle Scholar
  73. Kuhn GF (1977) Model for the interaural time differences in the azimuthal plane. J Acoust Soc Am 62:157–167CrossRefGoogle Scholar
  74. Laughlin SB (2001) Energy as a constraint on the coding and processing of sensory information. Curr Opin Neurobiol 1:475–480CrossRefGoogle Scholar
  75. Lavoué S, Miya M, Arnegard ME, Sullivan JP, Hopkins CD, Nishida M (2012) Comparable ages for the independent origins of electrogenesis in African and South American weakly electric fishes. PLoS One 7:e36287PubMedPubMedCentralCrossRefGoogle Scholar
  76. Lyons-Warren AM, Kohashi T, Mennerick S, Carlson BA (2013) Detection of submillisecond spike timing differences based on delay-line anti-coincidence detection. J Neurophysiol 110:2295–2311PubMedPubMedCentralCrossRefGoogle Scholar
  77. MacLeod KM, Soares D, Carr CE (2006) Interaural timing difference circuits in the auditory brainstem of the emu (Dromaius novaehollandiae). J Comp Neurol 495:185–201PubMedPubMedCentralCrossRefGoogle Scholar
  78. Matsushita A, Kawasaki M (2004) Unitary giant synapses embracing a single neuron at the convergent site of time-coding pathways of an electric fish, Gymnarchus niloticus. J Comp Neurol 472:140–155PubMedCrossRefGoogle Scholar
  79. Matsushita A, Kawasaki M (2005) Neuronal sensitivity to microsecond time disparities in the electrosensory system of Gymnarchus niloticus. J Neurosci 25:11424–11432PubMedPubMedCentralCrossRefGoogle Scholar
  80. Mauk MD, Buonomano DV (2004) The neural basis of temporal processing. Annu Rev Neurosci 27:307–340PubMedCrossRefGoogle Scholar
  81. McAlpine D, Jiang D, Palmer AR (2001) A neural code for low-frequency sound localization in mammals. Nat Neurosci 4(4):396–401PubMedCrossRefGoogle Scholar
  82. Moiseff A, Konishi M (1981) Neuronal and behavioral sensitivity to binaural time differences in the owl. J Neurosci 1:40–48PubMedPubMedCentralCrossRefGoogle Scholar
  83. Mugnaini E, Maler L (1987a) Cytology and immunocytochemistry of the nucleus extrolateralis anterior of the mormyrid brain: possible role of GABAergic synapses in temporal analysis. Anat Embryol (Berl) 176(3):313–336CrossRefGoogle Scholar
  84. Mugnaini E, Maler L (1987b) Cytology and immunocytochemistry of the nucleus of the lateral line lobe in the electric fish Gnathonemus petersii (Mormyridae): evidence suggesting that GABAergic synapses mediate an inhibitory corollary discharge. Synapse 1(1):32–56PubMedCrossRefGoogle Scholar
  85. Myoga MH, Lehnert S, Leibold C, Felmy F, Grothe B (2014) Glycinergic inhibition tunes coincidence detection in the auditory brainstem. Nat Commun 5:3790PubMedPubMedCentralCrossRefGoogle Scholar
  86. Parameshwaran S, Carr CE, Perney TM (2001) Expression of the Kv3.1 potassium channel in the avian auditory brainstem. J Neurosci 21(2):485–494PubMedPubMedCentralCrossRefGoogle Scholar
  87. Payne RS (1971) Acoustic location of prey by barn owls (Tyto alba). J Exp Biol 54:535–573PubMedGoogle Scholar
  88. Pecka M, Brand A, Behrend O, Grothe B (2008) Interaural time difference processing in the mammalian medial superior olive: the role of glycinergic inhibition. J Neurosci 28:6914–6925PubMedPubMedCentralCrossRefGoogle Scholar
  89. Plauška A, Borst JGG, van der Heijden M (2016) Predicting binaural responses from monaural responses in the gerbil medial superior olive. J Neurophysiol 115:2950–2963PubMedPubMedCentralCrossRefGoogle Scholar
  90. Plauška A, van der Heijden M, Borst JGG (2017) A test of the stereausis hypothesis for sound localization in mammals. J Neurosci 37:7278–7289PubMedPubMedCentralCrossRefGoogle Scholar
  91. Roberts MT, Seeman SC, Golding NL (2013) A mechanistic understanding of the role of feedforward inhibition in the mammalian sound localization circuitry. Neuron 78:923–935PubMedPubMedCentralCrossRefGoogle Scholar
  92. Rolls ET (1997) The representational capacity of the distributed encoding of information provided by populations of neurons in primate temporal visual cortex. Exp Brain Res 114:149–162PubMedCrossRefGoogle Scholar
  93. Rose G, Heiligenberg W (1985) Temporal hyperacuity in the electric sense of fish. Nature 318(6042):178–180PubMedCrossRefGoogle Scholar
  94. Scheich H, Bullock TH, Hamstra RH (1973) Coding properties of two classes of afferent nerve fibers: high frequency electroreceptors in the electric fish, Eigenmannia. J Neurophysiol 36:39–60PubMedPubMedCentralCrossRefGoogle Scholar
  95. Seidl AH, Rubel EW (2016) Systematic and differential myelination of axon collaterals in the mammalian auditory brainstem. Glia 64:487–494PubMedCrossRefGoogle Scholar
  96. Seidl AH, Rubel EW, Barría A (2014) Differential conduction velocity regulation in ipsilateral and contralateral collaterals innervating brainstem coincidence detector neurons. J Neurosci 34:4914–4919PubMedPubMedCentralCrossRefGoogle Scholar
  97. Seidl AH, Rubel EW, Harris DM (2010) Mechanisms for adjusting interaural time differences to achieve binaural coincidence detection. J Neurosci 30:70–80PubMedPubMedCentralCrossRefGoogle Scholar
  98. Smith PH, Joris PX, Carney LH, Yin TC (1991) Projections of physiologically characterized globular bushy cell axons from the cochlear nucleus of the cat. J Comp Neurol 304:387–407PubMedCrossRefGoogle Scholar
  99. Smith PH, Joris PX, Yin TC (1993) Projections of physiologically characterized spherical bushy cell axons from the cochlear nucleus of the cat: evidence for delay lines to the medial superior olive. J Comp Neurol 331:245–260PubMedCrossRefGoogle Scholar
  100. Smith PH, Joris PX, Yin TC (1998) Anatomy and physiology of principal cells of the medial nucleus of the trapezoid body (MNTB) of the cat. J Neurophysiol 79:3127–3142PubMedCrossRefGoogle Scholar
  101. Stange-Marten A, Nabel AL, Sinclair JL, Fischl M, Alexandrova O, Wohlfrom H, Kopp-Scheinpflug C, Pecka M, Grothe B (2017) Input timing for spatial processing is precisely tuned via constant synaptic delays and myelination patterns in the auditory brainstem. Proc Natl Acad Sci USA 114:E4851–E4858PubMedCrossRefGoogle Scholar
  102. Sullivan WE, Konishi M (1984) Segregation of stimulus phase and intensity coding in the cochlear nucleus of the barn owl. J Neurosci 4(7):1787–1799PubMedPubMedCentralCrossRefGoogle Scholar
  103. Szabo T, Ravaille M, Libouban S, Enger PS (1983) The mormyrid rhombencephalon. I. Light and EM investigations on the structure and connections of the lateral line lobe nucleus with HRP labelling. Brain Res 266:1–19PubMedCrossRefGoogle Scholar
  104. Takahashi T, Moiseff A, Konishi M (1984) Time and intensity cues are processed independently in the auditory system of the owl. J Neurosci 4(7):1781–1786PubMedPubMedCentralCrossRefGoogle Scholar
  105. Trussell LO (1997) Cellular mechanisms for preservation of timing in central auditory pathways. Curr Opin Neurobiol 7:487–492PubMedCrossRefGoogle Scholar
  106. Trussell LO (1999) Synaptic mechanisms for coding timing in auditory neurons. Annu Rev Physiol 61:477–496PubMedCrossRefGoogle Scholar
  107. van der Heijden M, Lorteije JAM, Plauska A, Roberts MT, Golding NL, Borst JGG (2013) Directional hearing by linear summation of binaural inputs at the medial superior olive. Neuron 78:936–948PubMedPubMedCentralCrossRefGoogle Scholar
  108. Vélez A, Carlson BA (2016) Detection of transient synchrony across oscillating receptors by the central electrosensory system of mormyrid fish. elife 5:e16851PubMedPubMedCentralCrossRefGoogle Scholar
  109. Vélez A, Kohashi T, Lu A, Carlson BA (2017) The cellular and circuit basis for evolutionary change in sensory perception in mormyrid fishes. Sci Rep 7:3783PubMedPubMedCentralCrossRefGoogle Scholar
  110. von der Emde G (1998) Capacitance detection in the wave-type electric fish Eigenmannia during active electrolocation. J Comp Physiol A 182:217–224CrossRefGoogle Scholar
  111. von der Emde G (1999) Active electrolocation of objects in weakly electric fish. J Exp Biol 202(10):1205–1215Google Scholar
  112. von Gersdorff H, Borst JG (2002) Short-term plasticity at the calyx of Held. Nat Rev Neurosci 2:53–64CrossRefGoogle Scholar
  113. Waxman SG (1980) Determinants of conduction velocity in myelinated nerve fibers. Muscle Nerve 3:141–150PubMedCrossRefGoogle Scholar
  114. Xu-Friedman MA, Hopkins CD (1999) Central mechanisms of temporal analysis in the knollenorgan pathway of mormyrid electric fish. J Exp Biol 202(10):1311–1318PubMedGoogle Scholar
  115. Yartsev MM (2017) The emperor’s new wardrobe: rebalancing diversity of animal models in neuroscience research. Science 358:466–469CrossRefGoogle Scholar
  116. Young SR, Rubel EW (1983) Frequency-specific projections of individual neurons in chick brainstem auditory nuclei. J Neurosci 3:1373–1378PubMedPubMedCentralCrossRefGoogle Scholar
  117. Zakon HH (1986) The electroreceptive periphery. In: Bullock TH, Heiligenberg W (eds) Electroreception. John Wiley & Sons, New York, pp 103–156Google Scholar
  118. Zhou Y, Carney LH, Colburn HS (2005) A model for interaural time difference sensitivity in the medial superior olive: interaction of excitatory and inhibitory synaptic inputs, channel dynamics, and cellular morphology. J Neurosci 25:3046–3058PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Biology, Washington University in St. LouisSt. LouisUSA

Personalised recommendations