Advertisement

Depressive and Cognitive Disorders in Climacteric Women

  • Joel RennóJr.
  • Juliana Pires Cavalsan
  • Leiliane Aparecida Diniz Tamashiro
Chapter
  • 10 Downloads

Abstract

Perimenopause is a period of hormone fluctuations accompanied by physical and affective symptoms of women. Among the most frequent symptoms are hot flashes, depression, and cognitive deficits.

The etiology of these symptoms is complex, but research suggests involvement of altered neurotransmitter systems, increased sensitivity to gonadal hormone fluctuations and psychosocial stress triggers.

This chapter will provide an updated review on diagnosis, prevalence, morbidity, risk factors, and evidence-based treatments that have been effective in treating the symptoms of perimenopause.

Keywords

Perimenopause Depression Cognition Vasomotor symptoms 

References

  1. 1.
    Li RX, Ma M, Xiao XR, Xu Y, Chen XY, Li B. Perimenopausal syndrome and mood disorders in perimenopause: prevalence, severity, relationships, and risk factors. Medicine (Baltimore). 2016;95(32):e4466.CrossRefGoogle Scholar
  2. 2.
    Weber MT, Maki PM, McDermott MP. Cognition and mood in perimenopause: a systematic review and meta-analysis. J Steroid Biochem Mol Biol. 2014;142:90–8.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Rössler W, Ajdacic-Gross V, Riecher-Rössler A, Angst J, Hengartner MP. Does menopausal transition really influence mental health? Findings from the prospective long-term Zurich study. World Psychiatry. 2016;15(2):146–54.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Szkup M, Jurczak A, Brodowska A, Brodowska A, Noceń I, Chlubek D, et al. Analysis of relations between the level of Mg, Zn, Ca, Cu, and Fe and depressiveness in postmenopausal women. Biol Trace Elem Res. 2017;176(1):56–63.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    CANMAT Depression Work Group. Canadian Network for Mood and Anxiety Treatments (CANMAT) 2016 clinical guidelines for the Management of Adults with major depressive disorder: section 6. Special populations: youth, women, and the elderly. Can J Psychiatr. 2016;61(9):588–603.CrossRefGoogle Scholar
  6. 6.
    Sassarini DJ. Depression in midlife women. Maturitas. 2016;94:149–54.PubMedCrossRefGoogle Scholar
  7. 7.
    Sundermann EE, Maki PM, Bishop JR. A review of estrogen receptor alpha gene (ESR1) polymorphisms, mood, and cognition. Menopause. 2010;17(4):874–86.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Newhouse P, Dumas J. Estrogen-cholinergic interactions: implications for cognitive aging. Horm Behav. 2015;74:173–85.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Pasquali MA, Harlow BL, Soares CN, Otto MW, Cohen LS, Minuzzi L, et al. A longitudinal study of neurotrophic, oxidative, and inflammatory markers in first-onset depression in midlife women. Eur Arch Psychiatry Clin Neurosci. 2018;268(8):771–81.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Freeman EW. Associations of depression with the transition to menopause. Menopause. 2010;17(4):823–7.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Gordon JL, Girdler SS, Meltzer-Brody SE, Stika CS, Thurston RC, Clark CT, et al. Ovarian hormone fluctuation, neurosteroids, and HPA axis dysregulation in perimenopausal depression: a novel heuristic model. Am J Psychiatry. 2015;172(3):227–36.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    de Kruif M, Spijker AT, Molendijk ML. Depression during the perimenopause: a meta-analysis. J Affect Disord. 2016;206:174–80.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Guérin E, Goldfield G, Prud’homme D. Trajectories of mood and stress and relationships with protective factors during the transition to menopause: results using latent class growth modeling in a Canadian cohort. Arch Womens Ment Health. 2017;20(6):733–45.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Bromberger JT, Kravitz HM. Mood and menopause: findings from the Study of Women’s Health Across the Nation (SWAN) over 10 years. Obstet Gynecol Clin N Am. 2011;38(3):609–25.CrossRefGoogle Scholar
  15. 15.
    Chou CH, Ko HC, Wu JY, Chang FM, Tung YY. Effect of previous diagnoses of depression, menopause status, vasomotor symptoms, and neuroticism on depressive symptoms among climacteric women: a 30-month follow-up. Taiwan J Obstet Gynecol. 2015;54(4):385–9.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Weber L, Thacker H. Paroxetine: a first for selective serotonin reuptake inhibitors – a new use: approved for vasomotor symptoms in postmenopausal women. Womens Health (Lond). 2014;10(2):147–54.CrossRefGoogle Scholar
  17. 17.
    Drewe J, Bucher KA, Zahner C. A systematic review of non-hormonal treatments of vasomotor symptoms in climacteric and cancer patients. Springerplus. 2015;4:65.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Study of Women’s Health Across the Nation. Duration of menopausal vasomotor symptoms over the menopause transition. JAMA Intern Med. 2015;175(4):531–9.CrossRefGoogle Scholar
  19. 19.
    North American Menopause Society. The 2012 hormone therapy position statement of: the North American Menopause Society. Menopause. 2012;19(3):257–71.CrossRefGoogle Scholar
  20. 20.
    Stubbs C, Mattingly L, Crawford SA, Wickersham EA, Brockhaus JL, McCarthy LH. Do SSRIs and SNRIs reduce the frequency and/or severity of hot flashes in menopausal women. J Okla State Med Assoc. 2017;110(5):272–4.PubMedPubMedCentralGoogle Scholar
  21. 21.
    North American Menopause Society. The 2017 hormone therapy position statement of the North American Menopause Society. Menopause. 2017;24(7):728–53.CrossRefGoogle Scholar
  22. 22.
    Salthouse TA. When does age-related cognitive decline begin? Neurobiol Aging. 2009;30:507–14.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Weber MT, Rubin LH, Maki PM. Cognition in perimenopause: the effect of transition stage. Menopause. 2013;20(5):511–7.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Cray LA, Woods NF, Mitchell ES. Identifying symptom clusters during the menopausal transition: observation from the Seattle Midlife Women’s Health Study. Climateric. 2013;16(5):539–49.CrossRefGoogle Scholar
  25. 25.
    Tepper PG, Randolph JF Jr, McConnell DS, Crawford SL, El Khoudary SR, Jofee H, et al. Trajectory clustering of estradiol and follicle-stimulating hormone during the menopausal transition among women in the Study of Women’s Health Across the Nation (SWAN). J Clin Endocrinol Metab. 2012;97(8):2872–80.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Murray E, Wise S, Graham K. Chapter 1: the history of memory systems. In: The evolution of memory systems: ancestors, anatomy and adaptations. 1st ed. Oxford: Oxford University Press; 2016. p. 512.CrossRefGoogle Scholar
  27. 27.
    McEwen BS, Akama KT, Spencer-Segal JL, Milner TA, Waters EM. Estrogen effect on the brain: actions beyond hypothalamus via novel mechanisms. Behav Neurosci. 2012;126:4–16.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Yang Y, Raine A. Prefrontal structural and functional brain imaging findings is antisocial, violent, and psychopathic individuals: a meta-analysis. Psychiatry Res. 2009;174(2):81–8.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Miller EK, Freedman DJ, Wallis JD. The prefrontal cortex: categories, concepts and cognition. Philos Trans R Soc Lond B Biol Sci. 2002;357(1424):1123–36.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Badre D, Kayser AS, D’Esposito M. Frontal cortex and the discovery of abstract action rules. Neuron. 2010;66(2):315–26.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Malenka RC, Nestler EJ, Hyman SE. Chapter 6: widely projecting systems: monoamine, acetylcholine, and orexin. In: Sydor A, Brown RY, editors. Molecular neuropharmacology: a foundation for clinical neuroscience. 2nd ed. New York: McGraw Hill Medical; 2009. p. 155–7.Google Scholar
  32. 32.
    Diamond A. Executive functions. Annu Rev Psychol. 2013;64:135–68.PubMedCrossRefGoogle Scholar
  33. 33.
    Chan RC, Shum D, Toulopoulou T, Chen EY. Assessment of executive functions: review of instruments and identification of cortical issues. Arch Clin Neuropsychol. 2008;23(2):201–16.PubMedCrossRefGoogle Scholar
  34. 34.
    Vaughan L, Giovanello K. Executive function in daily life: age-related influences of executive processes on instrumental actives of daily living. Psychol Aging. 2010;44(2):573–87.Google Scholar
  35. 35.
    Gazzaniga I, Magnum MS, Richard B, George R. Cognitive neuroscience. In: The biology of the mind. New York: WW. Norton; 2014. p. 45.Google Scholar
  36. 36.
    Stein T, Moritz C, Quigley M, Cordes D, Haughton V, Meyerand E. Functional connectivity in the thalamus and hippocampus studied with functional MR Imaging. Am J Neuroradiol. 2000;21(8):1397–401.PubMedGoogle Scholar
  37. 37.
    Aggleton JP, Brown MV. Episodic memory, amnesia, and the hippocampal-anterior thalamic axis. Behav Brain Sci. 1999;22(3):425–44.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Aggleton JP, O’Mara SM, Vann SD, Wright NF, Tsanov M, Erichsen JT. Hippocampal-anterior thalamic pathways for memory uncovering a network of direct and indirect actions. Eur J Neurosci. 2010;31(12):2292–307.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Burgess N, Maguire EA, O’Keefe J. The human hippocampus and spatial and episodic memory. Neuron. 2002;35(4):625–41.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Brown RE, Basheer R, McKenna JT, Strocker RE, McCarley RW. Control of sleep and wakefulness. Physiol Rev. 2012;92:1087–187.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Do JP, Xu M, Lee SH, Chang WC, Zhang S, Chung S, et al. Cell type-specific long-range connections of basal forebrain circuit. See eLife. 2016;5:e22475.CrossRefGoogle Scholar
  42. 42.
    Melmed S, Polonsky KS, Larsen PR, Kronenberg HM. Williams textbook of endocrinology. 12th ed. Philadelphia: Saunders; 2011. p. 107.Google Scholar
  43. 43.
    Ben-Shlomo A, Shlomo M. Pituitary somatostatin receptor signaling. Trends Endocrinol Metab. 2010;21(3):123–33.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Amunts K, Kedo O, Kindler M, Preperhoff P, Mohlberg H, Shah N, et al. Cytoarchitectonic mapping of the human amygdala, hippocampal region and entorhinal cortex: intersubject variability and probability maps. Anat Embryol (Berl). 2005;210(5–6):343–52.CrossRefGoogle Scholar
  45. 45.
    Lanteaume L, Khalfd S, Régis J, Marquis P, Chauvel P, Bartolomeu F. Emotion induction after direct intracerebral stimulations of human amygdala. Cereb Cortex. 2007;17(6):1307–13.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Markowistsch H. Differential contribution of right and left amygdala to affective information processing. Behav Neurol. IOS Press. 1998;11(4):233–44.CrossRefGoogle Scholar
  47. 47.
    Blair RJR. The amygdala and ventromedial prefrontal cortex: functional contributions and dysfunction in psychopathy. Philos Trans R Soc Lond B Biol Sci. 2008;363(1503):2557–65.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Monti JM. Reciprocal connections between the suprachiasmatic nucleus and the midbrain raphe nuclei: aputative role in the circadian control of behavioral states. In: Desurveilher S, Semba K, editors. Serotonin and sleep: molecular, functional and clinical aspects. Basel: Birkhauser; 2008. ISBN 978-3-7643-8560-6.CrossRefGoogle Scholar
  49. 49.
    Underwood MD, Khaibulina AA, Ellis SP, Moran A, Rice PM, Mann JJ, et al. Morphometry of the dorsal raphe nucleus serotonergic neurons in suicide victims. Biol Psychiatry. 1999;46(4):473–83.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Arango V, Underwood MD, Boldrini M, Tamir H, Kassir SA, Hsing S, et al. Serotonin 1A receptors, serotonin transporter binding and serotonin transporter mRNA expression in the brain stem of depressed suicide victims. Neuropsychopharmacology. 2001;25(6):892–903.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Matheus PR, Harrisom PJ. A histochemical immuno-histochemical, and in situ hybridization study of the dorsal raphe nucleus in major depression, bipolar disorder, schizophrenia, and suicide. J Affect Disord. 2012;137(1–3):125–34.CrossRefGoogle Scholar
  52. 52.
    Mark MF, Purpura DP. Autism, fever, epigenetics and the locus coeruleus. Brain Res Rev. 2009;59(2):388–92.CrossRefGoogle Scholar
  53. 53.
    Mouton PR, Pakkenberg B, Gundersen HJ, Price DL. Absolute number and size of pigmented locus coeruleus neurons in young and aged individuals. J Chem Neuroanat. 1994;7(3):185–90.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Benavoch EE. The locus coeruleus norepinephrine system: functional organization and potential clinical significance. Neurology. 2009;73(20):1699–704.CrossRefGoogle Scholar
  55. 55.
    Malenka RC, Nestler EJ, Hyman SE. Chapter 6: widely projecting systems: monoamines, acetylcholine, and orexin. In: Sydor A, Brown RY, editors. Molecular neuropharmacology: a foundation for clinical neuroscience. 2nd ed. New York: McGraw-Hill Medical; 2009. p. 157, 313–321.Google Scholar
  56. 56.
    Schwartz JR, Roth T. Neurophysiology of sleep and wakefulness: basic science and clinical implications. Curr Neuropharmacol. 2008;6(4):367–78.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Ressler KJ, Nemeroff CB. Role of norepinephrine in the pathophysiology of neuropsychiatric disorders. CNS Spectr. 2001;6(8):663–6, p. 670.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Andersen P, Morris R, Amaral D, Bliss T, O’Keefe J. The hippocampus book. New York: Oxford University Press; 2006.CrossRefGoogle Scholar
  59. 59.
    Eichenboun H, Yonelinas AP, Ranganatt C. The medial temporal lobe and recognition memory. Annu Rev Neurosci. 2007;30:123–52.CrossRefGoogle Scholar
  60. 60.
    Squire LR, Schacter DL. The neuropsychology of memory. New York: Guilford Press; 2002.Google Scholar
  61. 61.
    Van Elzakker M, Fevurly RD, Breindel T, Spencer RL. Environmental novelty is associated with a selective increase in Fos expression in the output elements of the hippocampal formation and the perirhinal cortex. Learn Mem. 2008;15(12):899–908.CrossRefGoogle Scholar
  62. 62.
    Smith DM, Mizumori SJ. Hippocampal place cells context, and episodic memory. Hippocampus. 2006;16(9):716–29.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Tulving E. Precos of elements of episodic memory. Behav Brain Sci. 1984;7(2):223–68.CrossRefGoogle Scholar
  64. 64.
    Di Gennaro G, Grammaldo LG, Quareto PP, Esporito V, Mascia A, Sparo A, et al. Severe amnesia following bilateral medial temporal lobe damage occurring on two distinct occasions. Neurol Sci. 2006;27(2):129–33.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Diana RA, Yonelinas AP, Ranganeth C. Imaging recollection and familiarity in the medial temporal lobe: a three-component model. Trends Cogn Sci. 2007;11(9):379–86.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Carlson NR. Physiology of behavior. 11th ed. Boston: Pearson Education; 2014. p. 624.Google Scholar
  67. 67.
    Purver D. Neuroscience. 5th ed. Sunderland: Sinauer; 2011. p. 171, 730–35, 590.Google Scholar
  68. 68.
    Halfkemeijir A, Altmann-Schneider I, Oleksik AM, von de Wiel I, Middelkop HAM, van Buchem MA. Increased function connectivity and brain atrophy in elderly with subjective memory complaints. Brain Connect. 2013;3(4):353–62.CrossRefGoogle Scholar
  69. 69.
    Cherbuin N, Sargent-Cox K, Eastel S, Sachdev P, Anstey KJ. Hippocampal atrophy is associated with subjective memory decline: the path through life study. Am J Geriatr Psychiatry. 2015;23(5):446–55.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Zahodne L, Tremont G. Unique effects of apathy and depression signs on cognition and function in amnestic mild cognitive impairment. Int J Geriatr Psychiatry. 2013;28:50–6.PubMedCrossRefGoogle Scholar
  71. 71.
    Miyake A, Shah P, editors. Models of working memory. Mechanisms of active maintenance and executive control. Cambridge: Cambridge University Press; 1999.Google Scholar
  72. 72.
    Diamond A. Executive function. Annu Rev Psychol. 2013;64:135–68.PubMedCrossRefGoogle Scholar
  73. 73.
    Cowen N. What are the differences between long-term, short-term and working memory? Prog Brain Res. 2008;169(169):323–38.CrossRefGoogle Scholar
  74. 74.
    Leech R, Braga R, Sharp DJ. Echoes of the brain within the posterior cingulate cortex. J Neurosci. 2013;32(1):215–22.CrossRefGoogle Scholar
  75. 75.
    Kozlovski SA, Vartanov AV, Nikonova EY, Pyasik MM, Velichkovsky BM. The cingulate cortex and human memory processes. Psychol Russia State Art. 2012;1(5):231–43.CrossRefGoogle Scholar
  76. 76.
    Leech R, Sharp DJ. The role of the posterior cingulate cortex in cognition and disease. Brain. 2013;137(Pt 1):12–32.PubMedPubMedCentralGoogle Scholar
  77. 77.
    Maki PM, Henderson VW. Cognition and the menopause transition. Menopause. 2016;23(7):803–5.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Truston RC. Cognition and menopausal transition: is perception reality? Menopausal. 2013;20(12):1231–2.CrossRefGoogle Scholar
  79. 79.
    Nilson J, Thomas AJ, O’Brien JT, Gallager P. White Mather and cognitive decline in aging: a focus on processing speed and variability. J Int Neuropsychol Soc. 2014;20(3):262–7.CrossRefGoogle Scholar
  80. 80.
    Dumas JA, Kutz AM, McDonald BC, Naylor MR, Pfaff AC, Saykin AJ, Newhouse PA. Increased working memory-related brain activity in middle-aged women with cognitive complaints. Neurons Aging. 2013;34(4):1145–7.CrossRefGoogle Scholar
  81. 81.
    Koebele SV, Bimonte-Nelson HA. The endocrine-brain-aging triad where many paths meet: female reproductive hormone changes at midlife and their influence on circuits important for learning and memory. Exp Gerontol. 2017;94:14–23.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Cherbuin N, Sargent-Cox K, Fraser M, Sachdev P, Anstey KJ. Being overweight is associated with hippocampal atrophy: the PATH Through life study. Int J Obes (Lond). 2015;39(10):1509–14.CrossRefGoogle Scholar
  83. 83.
    Theendakara V, Peter-Libeu CA, Bredesen DE, Rao RV. Transcriptional effects of ApoE 4: relevance to Alzheimer’s disease. Mol Neurobiol. 2018;55(6):5243–54.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Nonaka T, Matsuda-Suzukake M, Hasegawa M. Molecular mechanisms of the co-deposition of multiple pathological proteins in neurodegenerative disease. Neuropathology. 2018;38(1):64–71.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Joel RennóJr.
    • 1
    • 2
  • Juliana Pires Cavalsan
    • 3
  • Leiliane Aparecida Diniz Tamashiro
    • 3
  1. 1.University of São PauloSão PauloBrazil
  2. 2.Brazilian Association of Psychiatry (ABP)Rio de JaneiroBrazil
  3. 3.Department of Psychiatry, Faculty of Medicine, University of São Paulo and Women’s Mental Health Program of the Institute of Psychiatry of the Hospital das ClinicasFaculty of Medicine, University of São PauloSão PauloBrazil

Personalised recommendations