Conversion of Glycerol to Valuable Products

  • S. ChozhavendhanEmail author
  • G. Karthiga Devi
  • J. Jayamuthunagai
  • B. Bharathiraja
  • R. Praveen kumar
  • Jegannathan Kenthorai Raman


Crude glycerol generated as by-product in transesterification and saponification process in biodiesel and soap industries. The wide application of crude glycerol was restricted by the presence of a copious amount of impurities such as water, methanol, soap, fatty acid, and ash. A simple way of utilizing the surplus amount of glycerol generated in biodiesel industries is to convert them in the valuable product either by fermentation, esterification, hydrogenolysis, dehydration, oxidation, and liquefaction. Utilizing crude glycerol as feedstock for the production of valuable products through biological conversion is more reliable and safer when compared to other methods. Apart from the conventional products like ethanol, citric acid, 1, 3, propanediol, crude glycerol can also use for the production of biosurfactants, pigments, mannitol, biohydrogen.


Crude glycerol Biodiesel industry Biosurfactants Biohydrogen 


  1. Ahn, J. H., Sang, B. I., & Um, Y. (2011). Butanol production from thin stillage using Clostridium pasteurianum. Bioresource Technology, 102, 4934–4937.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Akpan, U. G., Jimoh, A., & Mohammed, A. D. (1999). Extraction, characterization and modification of castor seed oil. Leonardo Journal of Sciences, 4, 1–8.Google Scholar
  3. Ardi, M. S., Aroua, M. K., & AwanisHashim, N. (2015). Progress, prospect and challenges in glycerol purification process: A review. Renewable and Sustainable Energy Reviews, 42, 1164–1173.CrossRefGoogle Scholar
  4. Ashby, R. D., Nunez, A., Solaiman, K. Y. D., & Foglia, A. T. (2005). Sophorolipid Biosynthesis from a Biodiesel Co-product Stream. Journal of the American Oil Chemists’ Society, 82, 625–630.CrossRefGoogle Scholar
  5. Asher, D. R., & Simpson, D. W. (1956). Glycerol purification by ion exclusion. Journal of Physical Chemistry, 60, 518–521.CrossRefGoogle Scholar
  6. Auta, H. S., Abidoye, K. T., Tahir, H., Ibrahim, A. D., & Aransiola, S. A. (2014). Citric acid production by Aspergillus niger cultivated on Parkiabiglobosa fruit pulp. International Scholarly Research Notices, 1–8.Google Scholar
  7. Ayoub, M., & Abdullah, A, Z., (2012). Critical review on the current scenario and significance of crude glycerol resulting from biodiesel industry towards more sustainable renewable energy industry. Renewable and Sustainable Energy Reviews, 16, 2671–2686.Google Scholar
  8. Banat, I. M., Makkar, R. S., & Cameotra, S. S. (2000). Potential commercial applications of microbial surfactants. Applied Microbiology and Biotechnology, 53, 495–508.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Biebl, H. (2001). Fermentation of glycerol by Clostridium pasteurianum batch and continuous culture studies. Journal of Industrial Microbiology and Biotechnology, 27, 18–26.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Bohon, M. D., Metzger, B. A., Linak, W. P., King, C. J., & Roberts, W. L. (2011). Glycerol combustion and emissions. Proceedings of the Combustion Institute, 33, 2717–2724.CrossRefGoogle Scholar
  11. Brady, J. E., (1990). General chemistry principles and structure (5th ed.). New York: Wiley.Google Scholar
  12. Carnejo, A., Barrio, I., Compoy, M., Lazaro, J., & Navarrete, B. (2017). Oxygenated fuel additives from glycerol valorization. Main production pathways and effects on fuel properties and engine performance: A critical review. Renewable and Sustainable Energy Reviews, 79, 1400–1413.CrossRefGoogle Scholar
  13. Cesar, A. G, Quispe, Christian, J. A. Coronado., & Joao, A. Carvalho. Jr. (2013). Glycerol: Production, consumption, prices, characterization and new trends in combustion. Renewable and Sustainable Energy Reviews, 27, 475–493.Google Scholar
  14. Cheimenen, L, I., & NwosuObieogu, K., (2016). Sub- products of agro based ndustries as valuable raw material for the production of PHA: A review. International Journal of Scientific research in Science, Engineering and Technology, 2, 680–693.Google Scholar
  15. Chen, G. Q. (2009). A microbial polyhydroxyalkanoates (PHA) based bio-and materials industry. Chemical Society Reviews, 38, 2434–2446.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Cheng, L., Liu, L., & Ye, X. P. (2013). Acrolein production from crude glycerol in sub- and super-critical water. Journal of the American Oil Chemists’ Society, 90, 601–610.CrossRefGoogle Scholar
  17. Chi, Z., Liu, G. L., Liu, C. G., & Chi, Z. M. (2016). Poly (β-L-malic acid) (PMLA) from Aureobasidium spp. and its current proceedings. Applied Microbiology and Biotechnology, 100, 3841–3851.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Choi, W. J. (2008). Glycerol-based biorefinery for fuels and chemicals. Recent Patents on Biotechnology, 2, 173–180.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Chozhavendhan, S., Praveenkumar, R., Sivarathanakumar, S., Kirubalini, G., & Jayakumar, M. (2016a). Purification and characterization of waste stream glycerol derived from biodiesel industry. Journal of Environmental Biology, 37, 1529–1534.Google Scholar
  20. Chozhavendhan, S., Praveen Kumar, R., Bharathiraja, B., & Jayakumar, M. (2016b). Recent progress on transforming crude glycerol into high value chemicals: a critical review. Biofuels, 1–6.Google Scholar
  21. Chozhavendhan, S., Praveenkumar, R., Sivarathanakumar, S., Raja Sathendra, E., Bharathiraja, B., & Jayakumar, M. (2014). Comparative study on Candida sp for the production glycerol. Int J Chemtech Res, 6, 5058–5063.Google Scholar
  22. Clomburg, J. M., & Gonzalez, R. (2013). Anaerobic fermentation of glycerol: a platform for renewable fuels and chemicals. Trends in Biotechnology, 31, 20–28.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Dhar, B. R., & Kirtania, K. (2010). Excess methanol recovery in biodiesel production process using a distillation column: a simulation study. ChemEng Res Bull, 13, 55–60.Google Scholar
  24. Dharmadi, Y., Murarka, A., & Gonzalez, R. (2006). Anaerobic Fermentation of Glycerol by Escherichia coli: A New Platform for Metabolic Engineering. Biotechnology and Bioengineering, 94, 821–829.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Efeovbokhan, V. E., Anawe, P. A. L., Adeeyo, O., & Obafunso, B. A. (2012). Recovery of Glycerine from Spent Palm Kernel Soap and Palm Oil Soap Lye. International Journal of Engineering & Technology, 12, 11–16.Google Scholar
  26. Gallardo, R., Alves, M., & Rodrigues, L. R. (2014). Modulation of crude glycerol fermentation by Clostridium pasteurianum DSM 525 towards the production of butanol. Biomass and Bioenergy, 71, 134–143.CrossRefGoogle Scholar
  27. Gerpen, J. V. (2005). Biodiesel processing and production. Fuel Processing Technology, 86, 1097–1107.CrossRefGoogle Scholar
  28. Ghosh, D., Tourigny, A., & Hallenbeck, P. C. (2012). New stoichiometric reforming of biodiesel derived crude glycerol to hydrogen by photofermentation. International Journal of Hydrogen Energy, 37, 2273–2277.CrossRefGoogle Scholar
  29. Guerrero-Perez, M. O., Juana, M. R., Jorge, B., Jose, R. M., & Tomas, C. (2009). Recent inventions in glycerol transformations and processing. Recent Patents ChemEng, 2, 11–21.CrossRefGoogle Scholar
  30. Hasheminejad, M., Tabatabaei, M., Mansourpanah, Y., Far, M. K., & Javani, A. (2011). Upstream and downstream strategies to economize biodiesel production. BioresourTechnol, 102, 461–468.CrossRefGoogle Scholar
  31. Hunt, J. A. (1999). A Short history of soap. The Pharmaceutical journal, 263, 985–989.Google Scholar
  32. Israel, A. U., Obot, I. B., & Asuquo, J. E. (2008). Recovery of Glycerol from Spent Soap Lye by - Product of Soap Manufacture. E-Journal of Chemistry, 5, 940–945.CrossRefGoogle Scholar
  33. Iyyappan, J., Bharathiraja, B., Baskar, G., Jayamuthunagai, J., Barathkumar, S., & Anna shiny, R, (2018). Malic acid production by chemically induced Aspergillusniger MTCC 281 mutant from crude glycerol. Bioresource Technology, 251, 264–267.Google Scholar
  34. Johnson, D. T., & Taconi, K. A. (2007). The glyceringlut: options for the value-added conversion of crude glycerol resulting from biodiesel production. Environmental Progress, 26, 338–348.CrossRefGoogle Scholar
  35. Kale, S., Umbarkar, S. B., Dongare, M. K., Eckelt, R., Armbruster, U., & Martin, A. (2015). Selective formation of triacetin by glycerol acetylation using acidic ion exchange resins as catalyst and toluene as an entrainer. Appl. Catal. A: Gen., 490, 10–16.CrossRefGoogle Scholar
  36. Khan, A., Bhide, A., & Gadre, R. (2009). Mannitol production from glycerol by resting cells of Candida magnoliae. BioresourTechnol, 100, 4911–4923.CrossRefGoogle Scholar
  37. Khawaji, A. D., Kutubkhanah, I. K., & Wie, J. M. (2008). Advances in sea water desalination technologies. Desalination, 221, 47–69.CrossRefGoogle Scholar
  38. Konaka, A., Tago, T., Yoshikawa, T., Shitara, H., Nakasaka, Y., & Masuda, T. (2013). Conversion of biodiesel-derived crude glycerol into useful chemicals over a zirconia-iron oxide catalyst. Industrial and Engineering Chemistry Research, 52, 15509–15515.CrossRefGoogle Scholar
  39. Kong, P. S., Aroua, M. K., & Daud, W. M. A Wan, (2016). Conversion of crude and pure glycerol into derivatives: a feasibility evaluation. Renewable and Sustainable Energy Reviews, 63, 533–565.Google Scholar
  40. Kusidiyantini, E., Gaudin, P., Goma, G., & Blanc, P. J. (1998). Growth kinetics and astaxanthnin production of Phaffiarhodozymaon glycerol as acarbon source durin batch fementation. BiotechnolLett, 20, 929–934.Google Scholar
  41. Leung, D. Y. C., Wu, X., & Leung, M. K. H. (2010). A review on biodiesel production using catalyzed transesterification. Applied Energy, 87, 1083–1095.CrossRefGoogle Scholar
  42. Liu, Y., Koh, C. M. j., & Ji, L., (2011) Bioconversion of crude glycerol to glycolipids in Ustilago maydis. Bioresource Technology, 102, 3927–3933.Google Scholar
  43. Luo, X., Ge, X., Cui, S., & Li, Y., (2016a) Bioresource technology value-added processing of crude glycerol into chemicals and polymers. BioresourTechnol, 215, 144–154.Google Scholar
  44. Luo, X., Ge, X., Cui, S., & Li, Y., (2016b) Bioresource technology value-added processing of crude glycerol into chemicals and polymers. BioresourTechnol, 215, 144–154.Google Scholar
  45. Ma, F., & Hanna, M. A. (1999). Biodiesel production: a review. Bioresource Technology, 70, 1–15.CrossRefGoogle Scholar
  46. Malaviya, A., Jang, Y. S., & Lee, S. Y. (2012). Continuous butanol production with reduced byproducts formation from glycerol by a hyper producing mutant of Clostridium pasteurianum. ApplMicrobiolBiotechnol, 93, 1485–1494.Google Scholar
  47. Manosak, R., Limpattayanate, S., & Hunsom, M. (2011). Sequential-refining of crude glycerol derived from waste used-oil methyl ester plant via a combined process of chemical and adsorption. Fuel Processing Technology, 92, 92–99.CrossRefGoogle Scholar
  48. Mantzouridou, F., Naziri, E., & Tsimidou, M. Z. (2008). Industrial Glycerol as a Supplementary Carbon Source in the Production of -Carotene by Blakeslea trispora. Journal of Agriculture and Food Chemistry, 56, 2668–2675.CrossRefGoogle Scholar
  49. Mattam, A. J., Clomburg, J. M., Gonzalez, R., & Yazdani, S. S. (2013). Fermentation of glycerol and production of valuable chemical and biofuel molecules. BiotechnolLett, 35, 831–842.Google Scholar
  50. McCoy, M. (2006). Agribusiness giant goes head-to-head against petroleum-based chemical companies. Chemical & Engineering News, 84, 16–27.CrossRefGoogle Scholar
  51. Monteiro, M. R., Kugelmeier, C. L., Pinheiro, R, S., Batalha M. O., & César, A. S., (2018). Glycerol from biodiesel production: Technological paths for sustainability. Renewable and Sustainable Energy Reviews, 88, 109–122.Google Scholar
  52. Ngo, T. A., Kim, M. S., & Sim, S. J. (2011). High-yield biohydrogen production from biodiesel manufacturing waste by Thermotoga neapolitana. International Journal of Hydrogen Energy, 36, 5836–5842.CrossRefGoogle Scholar
  53. Oh, B., Seo, J., Heo, S., Hong, W., Luo, L., Joe, M., et al. (2011). Efficient production of ethanol from crude glycerol by a Klebsiella pneumoniae mutant strain. BioresourTechnol, 102, 3918–3922.CrossRefGoogle Scholar
  54. Parker, S. P. (1987). Glycerin: Encyclopedia of Science and Technology (6th ed., pp. 124–127). New York: Mc-Graw Hill Inc.Google Scholar
  55. Qureshi, N., & Blaschek, H. P. (2001). ABE production from Corn: A recent economic evaluation. Journal of Industrial Microbiology and Biotechnology, 27, 292–297.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Razavi, S. H., Seyed, M. M., Hassan, M. Y., & Marc, I. (2007). Fatty acid and carotenoid production by Sporobolomycesruberrimus when using technical glycerol and ammonium sulfate. J MicrobiolBiotechnol, 17, 1591–1597.Google Scholar
  57. Saint-Amans, S., Girbal, L., Andrade, J., Ahrens, K., & Soucaille, P. (2001). Regulation of Carbon and Electron Flow in Clostridium butyricum VPI 3266 Grown on Glucose-Glycerol Mixtures. Journal of Bacteriology, 183, 1748–1754.CrossRefPubMedPubMedCentralGoogle Scholar
  58. Samul, D., Leja, K., & Grajek, W. (2014). Impurities of crude glycerol and their effect on metabolite production. Annals of Microbiology, 4, 891–898.CrossRefGoogle Scholar
  59. Schievano, A., D Imporzano, G., & Adani, F., (2009). Substituting energy crops with organic wastes and agro-industrial residues for biogas production. Journal of Environmental Management, 90, 2537–2541.Google Scholar
  60. Singhabhandhu, A., & Tezuka, T. (2010). A perspective on incorporation of glycerin purification process in biodiesel plants using waste cooking oil as feedstock. Energy, 35, 2493–2504.CrossRefGoogle Scholar
  61. Sneha, K. A., Rafael, A. G., & Zhiyou, W. (2009). Use of biodiesel-derived crude glycerol for producing Eicosapentaenoic acid (EPA) by the fungus Pythiumir regular. Journal of Agriculture and Food Chemistry, 57, 2739–2744.CrossRefGoogle Scholar
  62. Stojkovic, I. J., Stamenkovic, O. S., Povrenovic, D. S., & Veljkovic, V. B. (2014). Purification technologies for crude biodiesel obtained by alkali-catalyzed transesterification. Renewable and Sustainable Energy Reviews, 32, 1–15.CrossRefGoogle Scholar
  63. Taconi, K. A., Venkataramanan, K. P., & Johnson, D. T. (2009). Growth and solvent production by Clostridium pasteurianum ATCC 6013 utilizing biodiesel-derived crude glycerol as the sole carbon source. Environ Prog Sustain Energy, 28, 100–110.CrossRefGoogle Scholar
  64. Tao, J. L., Wang, X. D., Shen, Y. L., & Wei, D. Z. (2005). Strategy for the improvement of prodigiosin production by a Serratia marcescens mutant through fed-batch fermentation. World J MicrobiolBiotechnol, 21, 969–972.CrossRefGoogle Scholar
  65. Tewari, K. S., Mehrotra, S. N., & Vishnoi, N. K. (1980). A Textbook of organic Chemistry (p. 469). New Delhi: Vikas.Google Scholar
  66. West, T. P. (2015). Fungal biotransformation of crude glycerol into malic acid. Zeitschrift für Naturforschung, 70, 165–167.CrossRefPubMedPubMedCentralGoogle Scholar
  67. Willke, T., & Vorlop, K. (2008). Biotransformation of glycerol into 1, 3-propanediol. European Journal of Lipid Science and Technology, 110, 831–840.CrossRefGoogle Scholar
  68. Zambanini, T., Sarikaya, E., Kleineberg, W., Buescher, J. M., Meurer, G., Wierckx, N., et al. (2016). Efficient malic acid production from glycerol with Ustilagotrichophora TZ1. Biotechnology for Biofuels, 67, 1–9.Google Scholar
  69. Zambanini, T., Tehrani, H. H., Geiser, E., Sonntag, K. C., Buescher, M. J., Meurer, G., et al. (2017). Metabolic engineering of Ustilago TZ1 for improved malic acid production. Metabolic Engineering Communications, 4, 12–21.CrossRefPubMedPubMedCentralGoogle Scholar
  70. Zhanyou, C., Denver, P., Zhiyou, W., Craig, F., & Shulin, C. (2007). A laboratory study of producing docosahexaenoic acid from biodiesel-waste glycerol by microalgal fermentation. Process Biochemistry, 42, 1537–1545.CrossRefGoogle Scholar
  71. Zhu, C., Chiu, S., Nakas, P., & Nomura, C. T. (2013). Bioplastics from waste glycerol derived from biodiesel industry. Journal of Applied Polymer Science, 130, 1–13.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • S. Chozhavendhan
    • 1
    Email author
  • G. Karthiga Devi
    • 2
  • J. Jayamuthunagai
    • 3
  • B. Bharathiraja
    • 4
  • R. Praveen kumar
    • 5
  • Jegannathan Kenthorai Raman
    • 6
  1. 1.Vivekanandha College of Engineering for WomenTiruchengode, ChennaiIndia
  2. 2.Saveetha School of EngineeringThandalam, ChennaiIndia
  3. 3.Centre for Biotechnology, Anna University ChennaiChennaiIndia
  4. 4.Vel Tech High Tech Dr. Rangarajan Dr. Sakunthala Engineering CollegeChennaiIndia
  5. 5.Arunai Engineering CollegeTiruvannamalaiIndia
  6. 6.Ecole Polytechnique Fédérale de LausanneLausanneSwitzerland

Personalised recommendations