Scalable Technologies for Lignocellulosic Biomass Processing into Cellulosic Ethanol

  • Latika Bhatia
  • Vijay Kumar Garlapati
  • Anuj K. ChandelEmail author


Major innovative breakthroughs in lignocellulose biotechnology offer significant opportunities for the utilization of agro-industrial residues like sugarcane bagasse, rice straw, corn stover into renewable fuels and biochemicals. Pretreatment is an inevitable and pivotal step to harness the sugars from the biomass effectively. These cellulosic sugars so-called second-generation (2G) are renewable and have the potential to replace conventional gasoline-derived chemicals and fuel, in a sustainable manner. However, the successful operation at large scale and production cost of cellulosic ethanol and renewable chemicals are two major concerns. Biomass conversion steps, i.e., pretreatment, large-scale enzymatic hydrolysis and fermentation, are critical and the cornerstone is the success of overall lignocellulose biorefineries. Only a handful of biomass pretreatment technologies such as a steam explosion, mild dilute acid pretreatment followed by a steam explosion, and ammonium hydroxide-mediated delignification is scalable and has the potential to be operated at the demonstration or commercial scale. Later, enzymatic hydrolysis using high total solids amounts (pretreated biomass) without any filtration and conditioning steps may provide economic sugars production. Each cellulosic ethanol producer has its technology as it largely depends on the feedstock and the operational conditions. Hence, the pretreatment conditions have to optimize by limiting the plant flexibility, which favors the handling of variant feedstocks in the same premise conditions. This situation necessitates the development of versatile pretreatments to process the variety of biomass feedstock using the minimum facilities and chemicals, eventually making process raw material independent. This chapter summarizes the recent developments made biomass processing (primary pretreatment methods, enzyme hydrolysis, fermentation, and distillation) into cellulosic ethanol.


Biorefineries Biomass processing Pretreatment Enzymatic hydrolysis Cellulosic ethanol 



AKC is grateful to the CAPES-Brazil for the financial assistance through visiting professor and researcher program (Process USP number: 15.1.1118.1.0).


  1. Agarwal, M., Goel, A., & Wati, L. (2018). Ethanol production from paddy straw using partially purified fungal cellulase. International Journal of Current Microbiology and Applied Sciences, 7(8), 3709–3719.CrossRefGoogle Scholar
  2. Alkasrawi, M., Eriksson, T., Borjesson, J., Wingren, A., Galbe, M., Tjerneld, F., et al. (2003). The effect of tween-20 on simultaneous saccharification and fermentation of softwood to ethanol. Enyzme and Microbial Technology, 33, 71–78.CrossRefGoogle Scholar
  3. Alvarez, C., Reyes-Sosa, F., & Diez, B. (2016). Enzymatic hydrolysis of biomass from wood. Microbial Biotechnology, 9, 149–156.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Ballesteros, I., Negro, M. A. J., Oliva, J. M., Cabanas, A., Manzanares, P., & Ballesteros, M. (2006). Ethanol production from steam-explosion pretreated wheat straw. Applied Biochemistry and Biotechnology, 130(1–3), 496–508.CrossRefGoogle Scholar
  5. Banerjee, R., Kumar, S. P. J., Mehendale, N., Sevda, S., & Garlapati, V. K. (2019). Intervention of microfluidics in biofuel and bioenergy sectors: Technological considerations and future prospects. Renewable and Sustainable Energy Reviews, 101, 548–558.CrossRefGoogle Scholar
  6. Basavaraj, G., Rao, P. P., Basu, K., Reddy, R., Kumar, A. A., Rao, P. S., et al. (2013). Assessing viability of bio-ethanol production from sweet sorghum in India. Energ Policy, 56, 501–508.CrossRefGoogle Scholar
  7. Bhatia, L., & Johri, S. (2018). Optimization of simultaneous saccharification and fermentation parameters for sustainable production of ethanol from wheat straw by Pichia stipitis NCIM 3498. Indian Journal of Experimental Biology, 56, 932–941.Google Scholar
  8. Blotkamo, P. J., Takaai, M., Pemberton, M. S., & Enert, G. S. (1978). Enzymatic hydrolysis of cellulose and simultaneous saccharification to alcohol. AIChE Symposium Series, 74, 85.Google Scholar
  9. Brownell, H. H., Yu, E. K. C., & Saddler, N. (1986). Steam explosion pretreatment of wood: effect of chip size, acid, moisture content and pressure drop. Biotechnology and Bioengineering, 28, 792–801.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Budsberg E, Crawford JT, Morgan H, Chin WS, Bura R, Gustafson R (2016) Hydrocarbon bio-jet fuel from bioconversion of poplar biomass: life cycle assessment. Biotechnol for Biofuels, 9, 170.
  11. Carmen, S. (2009). Lignocellulosic residues: Biodegradation and bioconversion by fungi. Biotechnol Advances, 27, 185–194.CrossRefGoogle Scholar
  12. Chandel, A. K., da Silva, S. S., & Singh, O. V. (2013). Detoxification of lignocellulose hydrolysates: Biochemical and metabolic engineering towards white biotechnology. Bioenerg Research, 6, 388–401.CrossRefGoogle Scholar
  13. Chandel, A. K., Bhatia, L., Garlapati. V. K., Roy, L., & Arora, A. (2017) Biofuel policy in indian perspective: socio-economic indicators and sustainable rural development. In A. K. Chandel, & R. K. Sukumaran (Eds.). Sustainable biofuels development in India (pp. 459–488). Switzerland:Springer International Publishing AG.
  14. Chandel, A. K., Garlapati, V. K., Singh, A. K., Antunes, F. A. F., & Silva, S. S. D. (2018). The path forward for lignocellulose biorefineries: Bottlenecks, Solutions, and perspective on commercialization. Bioresource Technology, 264, 370–381.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Chaula, Z., Said, M., John, G., Manyele, S., & Mhilu, C. (2014). Modelling the suitability of pine sawdust. Scientific Research, 21, 1103–1116.Google Scholar
  16. Cheah, W. Y., Show, P. L., Juan, J. C., Chang, J. S., & Ling, T. C. (2018) Waste to energy: the effects of Pseudomonas sp. on Chlorella sorokiniana biomass and lipid productions in palm oil mill effluent. Clean Technologies and Environmental Policy, 20(9), 2037–2045.Google Scholar
  17. Chen, W., Pen, B., Yu, C., & Hwang, W. (2011). Pretreatment efficiency and structural characterization of rice straw by an integrated process of dilute-acid and steam explosion for bioethanol production. Bioresource Technology, 102, 2916–2924.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Chundawat, S. P. S., Venkatesh, B., & Dale, B. E. (2007). Effect of particle size-based separation of milled corn stover on AFEX pretreatment and enzymatic digestibility. Biotechnology and Bioengineering, 96(2), 219–231.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Crawford, J. T., Shan, C. W., Budsberg, E., Morgan, H., Bura, R., & Gustafson, R. (2016). Hydrocarbon bio-jet fuel from bioconversion of poplar biomass: techno-economic assessment. Biotechnology for Biofuels, 9, 141. Scholar
  20. Dawson, L., & Boopathy, R. (2007). Use of post-harvest sugarcane residue for ethanol production. Bioresource Technology, 98, 1695–1699.CrossRefPubMedPubMedCentralGoogle Scholar
  21. De Moraes-Rocha, G. J., Martin, C., Soares, I. B., Maior, A. M. S., Baudel, H. M., & De Abreu, C. A. M. (2010). Dilute mixed-acid pretreatment of sugarcane bagasse for ethanol production. Biomass and Bioenergy, 35, 663–670.CrossRefGoogle Scholar
  22. Duff, S. J. B., & Murray, W. D. (1996). Bioconversion of forest products industry waste cellulosics to fuel ethanol: a review. Bioresource Technology, 55, 1–33.CrossRefGoogle Scholar
  23. Elleuche, S., Schrcoeder, C., Sahm, K., & Antranikian, G. (2014). Extremozymes—biocatalysts with unique properties from extremophilic microorganisms. Current Opinion in Biotechnology, 29, 116–123.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Elumalia, S., & Thangavelu, V. (2010). Simultaneous saccharification and fermentation (SSF) of pretreated sugarcane bagasse using cellulose and Saccharomyces cerevisiae-kinetics and modeling. Chemical Engineering Research Bulletin, 14, 29–35.Google Scholar
  25. ESep. (2008). A Novel Low Energy Route to Ethanol Recovery, Trans Ionics Corporation 21st NREL Industry Growth Forum October 28-30, Trans Ionics Corporation. Incorporated 2000, Trans Ionics corporation 21st NREL industry growth forum 28–30. Energy-Saving Separation.Google Scholar
  26. Gadde, B., Menke, C., & Wassman, R. (2009). Rice straw as a renewable energy source in India, Thailand, and the Philippines: overall potential and limitations for energy contribution and greenhouse gas mitigation. Biomass and Bioenergy, 33, 1532–1546.CrossRefGoogle Scholar
  27. Galbe, M., & Zacchi, G. (2002). A review of the production of ethanol from softwood. Applied Microbiology and Biotechnology, 59, 618–628.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Ganguly, R., & Garlapati, V. K. (2017). Comparative account on carbon footprints of burning gasoline and ethanol. In Anuj Chandel & Marcos Henrique Luciano Silveira (Eds.), Sugarcane bio-refinery: Technologies, commercialization, policy issues and paradigm shift (pp. 241–252). USA: Elsevier Science Publishing Co Inc.Google Scholar
  29. Garlapati, V. K., Tewari, S., & Ganguly, R. (2019). LCA of first-, second- generation, and microalgae biofuels. In: Majid Hosseini (Ed.), Advances in feedstock conversion technologies for alternative fuels and bioproducts, (pp. 355–371). Elsevier, USA, Imprint:Woodhead Publishing.Google Scholar
  30. Ghose, T. K., Roychoudhury, P. K., & Ghosh, P. (1984). Simultaneous saccharification and fermentation (SSF) of lignocellulosics to ethanol under vacuum cycling and step feeding. Biotechnology and Bioengineering, 26, 377–381.CrossRefGoogle Scholar
  31. Goel, A., & Wati, L. (2016). Ethanol production from Rice (Oryza sativa) straw by simultaneous saccharification and cofermentation. Indian Journal of Experimental Biology, 54, 525–529.PubMedGoogle Scholar
  32. Goldstein, I., & Easter, J. (1992). An improved process for converting cellulose to ethanol. Tappi Journal, 28, 135.Google Scholar
  33. Gupta, R., Khasa, Y. P., & Kuhad, R. C. (2011). Evaluation of pretreatment methods in improving the enzymatic saccharification of cellulosic materials. Carbohydrate Polymers, 84, 1103–1109.CrossRefGoogle Scholar
  34. Haagensen, F., & Ahring, B. K. (2002). Enzymatic hydrolysis and glucose fermentation of wet oxidized sugarcane bagasse and rice for energy production via biomass steam explosion. Smart Grid and Renewable Energy, 5, 1–7.Google Scholar
  35. Hess, J. R., Kenney, K. L., Wright, C. T., Perlack, R., & Turhollow, A. (2009). Corn stover availability for biomass conversion: Situation analysis. Cellulose, 16, 599–619.CrossRefGoogle Scholar
  36. Ikwebe, J., & Harvey, A. P. (2011). Intensification of bioethanol production by simultaneous saccharification and fermentation (SSF) in an oscillatory baffled reactor (OBR) (pp. 381–388). Sweden: World Renewable Energy Congress. Bioenergy technol.Google Scholar
  37. Iyer, P. V., Wu, Z. W., Kim, S. B., & Lee, Y. Y. (1996). Ammonia recycled percolation process for pretreatment of herbaceous biomass. Applied Biochemistry and Biotechnology, 57–58, 121–132.CrossRefGoogle Scholar
  38. Jonathan, M. C., DeMartini, J., Van StigtThans, S., Hommes, R., & Kabel, M. A. (2017). Characterization of non-degraded oligosaccharides in enzymatically hydrolysed and fermented, dilute ammonia-pretreated corn stover for ethanol production. Biotechnology for Biofuels, 10, 112.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Kapoor, R. K., Chandel, A. K., Kuhar, S., Gupta, R., & Kuhad, R. C. (2006). Bioethanol from crop residues, production forecasting and economics: An Indian perspective. In R. C. Kuhad & A. Singh (Eds.), Lignocellulose biotechnology: Current and future prospects (pp. 32–45). New Delhi: I.K. International.Google Scholar
  40. Kaur, P., Kocher, G. S., & Taggar, M. S. (2018). Comparison of ethanol production from rice straw by Saccharomyces cerevisiae and Zymomonasmobilis. Journal of Biofuels, 9(2), 92–98.CrossRefGoogle Scholar
  41. Keller, G. E., & Bryan, P. F. (2000). Process engineering moving in new directions. Chemical Engineering Progress, 96(1), 41–50.Google Scholar
  42. Kim, J., Kim, K. S., Lee, J., Park, S. M., Cho, H., Park, J. C., et al. (2011). Two-stage pretreatment of rice straw using aqueous ammonia and dilute acid. Bioresource Technology, 102, 8992–8999.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Kim, T. H., & Lee, Y. Y. (2005). Pretreatment and fractionation of corn stover by ammonia recycle percolation process. Bioresource Technology, 96(18), 2007–2013.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Ko, J. K., Bak, J. S., Jung, M. W., Lee, H. J., Choi, I., Kim, T. H., et al. (2009). Ethanol production from rice straw using optimized aqueous-ammonia soaking pretreatment and simultaneous saccharification and fermentation processes. Bioresource Technology, 100, 4374–4380.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Kont, R., Kurasin, M., Teugjas, H., & Valjamae, P. (2013). Strong cellulase inhibitors from the hydrothermal pretreatment of wheat straw. Biotechnology for Biofuels, 6, 135.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Kulasinski, K., Keten, S., Churakov, S. V., Derome, D., & Carmeliet, J. (2014). A comparative molecular metabolites and lignocellulose. Scientific Reports, 5, 1–12.Google Scholar
  47. Liu, H., Pang, B., Zhao, Y., Lua, J., Han, Y., & Wang, H. (2018). Comparative study of two different alkali-mechanical pretreatments of cornstover for bioethanol production. Fuel, 221, 21–27.CrossRefGoogle Scholar
  48. Lynd, L. R., van Zyl, W. H., McBride, J. E., & Laser, M. (2005). Consolidated bioprocessing of cellulosic biomass: an update. Current Opinion in Biotechnology, 16, 577–583.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Mori, T., Tsuboi, Y., Ishida, N., Nishikubo, N., Demura, T., & Kikuchi, J. (2015). Multidimensional higher solution magic angle spinning and solution-state NMR characterization of 13C-labeled plant dynamics study of crystalline, paracrystalline and amorphous states of cellulose. Cellulose for energy production via biomass steam explosion. Smart Grid and Renewable Energy, 5, 1–7.Google Scholar
  50. Mosier, N., Wyman, C. E., Dale, B. D., Elander, R. T., Lee, Y. Y., Holtzapple, M., et al. (2005). Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology, 96, 673–686.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Najafi, G., Ghobadian, B., Tavakoli, T., & Yusaf, T. (2009). Potential of bioethanol production from agricultural wastes in Iran. Renewable and Sustainable Energy Reviews, 13, 1418–1427.CrossRefGoogle Scholar
  52. Onoghwarite, O. E., Obiora, N. V., Ben, E. A., & Moses, N. O. E. (2016). Bioethanol production from corn stover using Saccharomyces cerevisiae. International Journal of Engineering Science, 7, 8.Google Scholar
  53. Perlack, R. D., Wright, L. L., Turhollow, A. F., Graham, R. L., Stokes, B. J., & Erbach, D. C. (2005). Biomass as feedstock for a bioenergy and bioproducts industry: The technical feasibility of a billion-ton annual supply.
  54. Philippini, R. R., Martiniano, S. E., Chandel, A. K., de Carvalho, W., & Silva, S. S. (2017). Pretreatment of sugarcane bagasse from cane hybrids: effects on chemical composition and 2G sugars recovery. Waste and Biomass Valorization. Scholar
  55. Ragauskas, A., Beckham, G., Biddy, M., Chandra, R., Chen, F., & Davis, M. (2014). Lignin valorization: improving lignin processing in the biorefinery. Science, 344, 6185.CrossRefGoogle Scholar
  56. Ramos, J. L., Valdivia, M., Garcia-Lorente, F., & Segura, A. (2016). Benefits and perspectives on the use of biofuels. Microbial Biotechnology, 9, 436–440.CrossRefPubMedPubMedCentralGoogle Scholar
  57. Sasikumar, E., & Viruthagiri, T. (2010). Simultaneous saccharification and fermentation (SSF) of sugarcane bagasse-kinetics and modeling. International Journal of Chemical and Biological Engineering, 3(2), 57–64.Google Scholar
  58. Sharma, D., Garlapati, V. K., & Goel, G. (2016). Bioprocessing of wheat bran for the production of lignocellulolytic enzyme cocktail by Cotylidia pannosa under submerged conditions. Bioengineered, 7(2), 88–97.CrossRefPubMedPubMedCentralGoogle Scholar
  59. Sohel, M. I., & Jack, M. W. (2011). Therrmodynamic analysis of lignocellulosic biofuel production via a biochemical process: guiding technology selection and research focus. Bioresource Technology, 102(3), 2617–2622.CrossRefPubMedPubMedCentralGoogle Scholar
  60. Stelte, W. (2013). Steam explosion for biomass pre-treatment. Denmark: Danish Technological Institute.Google Scholar
  61. Stenberg, K., Bollok, M., Reczey, K., Galbe, M., & Zacchi, G. (2000). Effect of substrate and cellulase concentration on simultaneous saccharification and fermentation of steam-pretreated softwood for ethanol production. Biotechnology and Bioengineering, 68, 204–210.CrossRefPubMedPubMedCentralGoogle Scholar
  62. SukharnikovLO, Cantwell B. J., & PodarM, Zhulin I. B. (2011). Cellulases: ambiguous non-homologous enzymes in a genomic perspective. Trends in Biotechnology, 29(10), 473–479.CrossRefGoogle Scholar
  63. Szczodrak, J. (1989). The use of cellulases from a j-glucosidasc hyperproducing mutant of Trichoderma reesei in simultaneous saccharification and fermentation of wheat straw. Biotechnology and Bioengineering, 9, 11–12.Google Scholar
  64. Szitkai, Z., Lelkes, Z., Rev, E., & Fonyo, Z. (2002). Optimization of hybrid ethanol dehydration systems. Chemical Engineering and Processing, 41, 631–646.CrossRefGoogle Scholar
  65. Taherzadeh, M. J., & Karimi, K. (2008). Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: A review. International Journal of Molecular Sciences, 9, 1621–1651.CrossRefPubMedPubMedCentralGoogle Scholar
  66. Takagi, M., Abe, S., Suzuki, S., Emert, G. H., & Yata, N. (1977). A method for production of alcohol directly from cellulose using cellulose and yeast. In Proceedings, Bioconversion Symposium, IIT, Delhi (pp. 551–571).Google Scholar
  67. Taniguchi, M., Suzuki, H., Watanabe, D., Sakai, K., Hoshino, K., & Tanaka, T. (2005). Evaluation of pretreatment with Pleurotus ostreatus for enzymatic hydrolysis of rice straw. Journal of Bioscience and Bioengineering, 100(6), 637–643.CrossRefPubMedPubMedCentralGoogle Scholar
  68. Templeton, D. W., Sluiter, A. D., Hayward, T. K., Hames, B. R., & Thomas, S. R. (2009). Assessing corn stover composition and sources of variability via NIRS. Cellulose, 16, 621–639.CrossRefGoogle Scholar
  69. Tiwari, R., Rana, S., Singh, S., Arora, A., Kaushik, R., Agrawal, V. V., et al. (2013). Biological delignification of paddy straw and Parthenium sp. using a novel micromycete Myrothecium roridum LG7 for enhanced saccharification. Bioresource Technology, 100(6), 637–643.Google Scholar
  70. Tsuyomoto, M., Teramoto, A., & Meares, P. (1997). Dehydration of ethanol on a pilot plant scale, using a new type of hollow-fiber membrane. Journal of Membrane Science, 133, 83–94.CrossRefGoogle Scholar
  71. Vaid, S., & Bajaj, B. K. (2017). Production of ionic liquid tolerant cellulase from Bacillus subtilis G2 using agro industrial residues with application potential for saccharification of biomass under one pot consolidated bioprocess. Waste and Biomass Valorization, 8, 949–964.CrossRefGoogle Scholar
  72. Valdivia, M., Galan, J. L., Laffarga, J., & Ramos, J. L. (2016). Biofuels 2020: Biorefineries based on lignocellulosic materials. Microbial Biotechnology, 9(5), 585–594.CrossRefPubMedPubMedCentralGoogle Scholar
  73. Villar, A., Arribas, J. J., & Parrondo, J. (2011). Waste-to-energy technologies in continuous process industries. Clean Technologies and Environmental Policy, 14(1), 29–39.CrossRefGoogle Scholar
  74. Wang, M., Chen, M., Fang, Y., & Tan, T. (2018). Highly efficient conversion of plant oil to bio-aviation fuel and valuable chemicals by combination of enzymatic transesterification, olefin cross-metathesis, and hydrotreating. Biotechnology for Biofuels, 11, 30.CrossRefPubMedPubMedCentralGoogle Scholar
  75. Wang, V. B., Yam, J. K. H., Chua, S. L., Zhang, Q., Cao, B., Chye, J. L. S., et al. (2014). Synergistic microbial consortium for bioenergy generation from complex natural energy sources. The Scientific World Journal, 2014, 1–5.Google Scholar
  76. Wati, L., Kumari, S., & Kundu, B. S. (2007). Paddy straw as substrate for ethanol production. Indian Journal of Microbiology, 47, 26–29.CrossRefPubMedPubMedCentralGoogle Scholar
  77. Wingren, A., Galbe, M., & Zachhi, G. (2003). Techno-economic evaluation of producing ethanol from softwood: Comparison of SSF and SHF and identification of bottlenecks. Biotechnology Progress, 19, 1086–1093.Google Scholar
  78. Wright, J. D. (1998). Ethanol from biomass by enzymatic hydrolysis. Chemical Engineering Progress, 84(8), 62–74.Google Scholar
  79. Yang, B., & Wyman, C. (2008). Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuels, Bioproducts and Biorefining, 2, 26–40.CrossRefGoogle Scholar
  80. Yu, J., & Zhaoxian, X. (2019). Process integration for ethanol production from corn and corn stover as mixed substrates. Bioresource Technology, 279, 10–16.CrossRefPubMedPubMedCentralGoogle Scholar
  81. Zhao, Y., Damgaard, A., & Christensen, T. H. (2018). Bioethanol from corn stover – a review and technical assessment of alternative biotechnologies. Progress in Energy and Combustion Science, 67, 275–291.CrossRefGoogle Scholar
  82. Zhu, J. Y., Pan, X. J., Wang, G. S., & Gleisner, R. (2009). Sulfite pretreatment for robust enzymatic saccharification of spruce and redpine. Bioresource Technology, 100, 2411–2418.CrossRefPubMedPubMedCentralGoogle Scholar
  83. Zhu, S., Wu, Y., Yu, Z., Zhang, X., Wang, C., Yu, F., et al. (2006). Production of ethanol from microwave-assisted alkali pretreated wheat straw. Process Biochemistry, 41, 869–873.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Latika Bhatia
    • 1
  • Vijay Kumar Garlapati
    • 2
  • Anuj K. Chandel
    • 3
    Email author
  1. 1.Department of Microbiology & BioinformaticsAtal Bihari Vajpayee UniversityBilaspurIndia
  2. 2.Department of Biotechnology & BioinformaticsJaypee University of Information Technology (JUIT)WaknaghatIndia
  3. 3.Department of Biotechnology, Engineering School of Lorena (EEL)University of São PauloSão PauloBrazil

Personalised recommendations