Advertisement

Biotechnology for Environmentally Benign Gold Production

  • K. A. NatarajanEmail author
Chapter

Abstract

Biotechnology relevant to gold exploration, mining, recovery, and waste disposal is illustrated with respect to microbiological aspects of gold mineralization, biooxidation of refractory sulfide ores and concentrates, cyanide-free gold dissolution, and biodegradation of cyanide containing effluents. Current industrial status of technological innovations in the bioreactor processing and heap bioleaching of refractory sulfide ores and concentrates are discussed. Biodetoxification and degradation of cyanides in waste tailings and waters are critically analyzed with examples from industrial practice. Prospects for direct biodissolution of gold are brought out. Recovery of gold from spent leach cyanide solutions and electronics wastes is examined. Bright future prospects for biotechnology in gold exploration, mining, extraction, and waste disposal are emphasized.

Keywords

Biotechnology Refractory gold ores and concentrates Biooxidation Bioheaps Microbial gold solubilization Biodegradation of cyanides 

Notes

Acknowledgements

The author is thankful to the National Academy of Sciences, India (NASI) for Honorary Scientist Contingency grant.

References

  1. Adams, M. D. (2016). Advances in gold ore processing-project development and operations (2nd ed.). Amsterdam: Elsevier.Google Scholar
  2. Akcil, A. (2003). Destruction of cyanide in gold mill effluents, biological versus chemical treatments. Biotechnology Advances, 21, 501–511.CrossRefGoogle Scholar
  3. Akcil, A., & Mudder, T. (2003). Microbial destruction of cyanide wastes in gold mining: Process review. Biotechnology Letters, 25, 445–450.CrossRefGoogle Scholar
  4. Amankwah, R. K., Yen, W. T., & Ramsay, J. A. (2005). A two-stage bacterial ore treatment process for double refractory gold ore. Minerals Engineering, 18, 103–108.CrossRefGoogle Scholar
  5. Balakrishnan, M., Modak, J. M., Natarajan, K. A., & Gururaj Naik, J. S. (1994). Biological uptake of precious and base metals from gold-process cyanide effluents. Minerals & Met. Processing, 11, 197–202.Google Scholar
  6. Beckman, S., & Thompson, L. (2004). BioLix-an alternative to cyanide for the extraction of precious metals from ore. In Bac-min conference, Victoria (pp. 107–112).Google Scholar
  7. Bhakta, P., & Arthur, B. (2002). Heap bio-oxidation and gold recovery at Newmont mining: First-year results. JOM, 54, 31–34.CrossRefGoogle Scholar
  8. Boon, M., & Heijin, J. J. (1998). Gas-liquid mass transfer phenomenon in biooxidation experiments of sulfide minerals: A critical review of literature data. Hydrometallurgy, 48, 187–204.CrossRefGoogle Scholar
  9. Botz, M. M., Mudder, T. I., & Akcil, A. (2016). Cyanide treatment: Physical, chemical and biological processes. In M. D. Adams (Ed.), Advances in gold ore processing (Chap. 35, pp. 619–644). Amsterdam: Elsevier.Google Scholar
  10. Brierley, J. A. (2003). Response of microbial systems to thermal strees in biooxidation-heap pretreatment of refractory gold ores. Hydrometallurgy, 71, 13–19.CrossRefGoogle Scholar
  11. Brierley, C. L., & Brierley, J. A. (2013). Progress in bioleaching: part B: Applications of microbial processes by the minerals industries. Applied Microbiology and Biotechnology, 97, 7543–7552.CrossRefGoogle Scholar
  12. Brierley, J. A., & Kulpa, C. F. (1992). Microbial consortium treatment of refractory precious metal ores, USA, 5,127,942, 07 July 1992.Google Scholar
  13. Campbell, S. C., Olson, G. J., Clark, T. R., & McFeters, G. (2001). Biogenic production of cyanide and its application to gold recovery. Journal of Industrial Microbiology and Biotechnology, 26, 134–139.CrossRefGoogle Scholar
  14. Cui, J., & Zhang, L. (2008). Metallurgical recovery of metals from electronic waste—A review. Journal of Hazardous Materials, 158, 228–256.CrossRefGoogle Scholar
  15. Cyanide-free biocatalyzed leaching of gold and silver ore. www.yestech.com/tech/gold1.htm.
  16. Dement’ev, V. E., & Vojloshnikov, G. I. (2011). Ingiredmet experience on gold biometallurgy. In G. Qiu, T. Jiang, Q. Qin, K. Liu, Y. Yang & H. Wang (Eds.), Proceedings of the 19th International Biohydrometallurgy Symposium, (pp. 818–820), Changsha, China.Google Scholar
  17. Gahan, C. S., Srichandan, H., Kim, D. J., & Akcil, A. (2012). Biohydrometallurgy and biomineral processing technology: A review on its past, present and future. Research Journal of Recent Science, 1, 85–99.Google Scholar
  18. Gericke, M. (2012) Review of the role of microbiology in the design and operation of heap bioleaching processes. Journal of South African Institute of Mining and Metallurgy, 112.Google Scholar
  19. Gericke, M., & Pinches, A. (2006). Microbial production of gold nanoparticles. Gold Bulletin, 39, 22–28.CrossRefGoogle Scholar
  20. Gericke, M., Neale, J. W., & van Staden, P. J. (2009). A Mintek perspective of the past 25 years in minerals bioleaching. Journal of the Southern African Institute of Mining and Metallurgy, 109, 567–585.Google Scholar
  21. Groudev, S. N., Spasova, I. I., & Ivanov, I. M. (1996). A combined chemical and biological heap leaching of an oxide gold-bearing ore. Minerals Engineering, 9, 707–713.Google Scholar
  22. Harvey, T. J., & Bath, M. (2007). The geobiotics geocoat technology-progress and challenges. In D. E. Rawlings & D. B. Johnson (Eds.), Biomining (pp. 97–112). Springer: Berlin.CrossRefGoogle Scholar
  23. Harvey, T. J., Merwe, W. V. D., & Afewu, K. (2002). The application of the GeoBiotics GEOCOAT ® biooxidation technology for the treatment of sphalerite at Kumba resources’ Rosh Pinah mine. Minerals Engineering, 15, 823–829.CrossRefGoogle Scholar
  24. Huddy, R. J., Kantor, R., Zyl, A. W. V., Hille, R. P. V., Banfield, J., & Harrison, S. T. L. (2015a). Analysis of the microbial community associated with a bioprocess system for remediation of thiocyanate and cyanide-laden mine water effluents. Advanced Material Research, 1130, 614–617.Google Scholar
  25. Huddy, R. J., Zyl, A. W. V., Van Hille, R. P., & Harrison, S. T. L. (2015b). Characterization of the complex microbial community associated with the ASTER thiocyanate biodegradation system. Minerals Engineering, 76, 65–71Google Scholar
  26. Hunter, R. M., Stewart, F. M., Darsow, T., Fogelsong, M. L., Mogk, D. W., Abbott, E. H., et al. (1998). New alternative to cyanidation: Biocatalyzed bisulfide leaching. Mineral Procesing and Extractive Metallurgy Review, 19, 183–197.CrossRefGoogle Scholar
  27. Kadlec, B. H., & Wallace, S. D. (2008). Treatment of wetlands, CRC Press.Google Scholar
  28. Kaksonen, A., Mudunuru, B. M., & Hack, R. (2014). The role of microorganisms in gold processing and recovery—A review. Hydrometallurgy, 142, 70–83.CrossRefGoogle Scholar
  29. Karthikeyan, O. P., Rajasekar, A., & Balasubramanian, R. (2015). Bio-oxidation and bio-cyanidation of refractory mineral ores for gold extraction: A review. Critical Reviews in Environmental Science and Technology, 45, 1611–1643.CrossRefGoogle Scholar
  30. Kashefi, K., Tor, J. M., Nevin, K. P., & Loveley, D. R. (2001). Reductive precipitation of gold by assimilatory Fe(III)—reducing bacteria and archaea. Applied and Environmental Microbiology, 67, 3275–3279.CrossRefGoogle Scholar
  31. Kenney, P. L., Zhen, S., Bunker, B. A., & Fein, J. B. (2012). An experimental study of Au removal from solution by non-metabolizing bacterial cells and their exudates. Geochimica et Cosmochimica Acta, 87, 51–60.CrossRefGoogle Scholar
  32. Khamar, Z., Kakhki, A. M., & Gharaie, M. H. M. (2015). Remediation of cyanide from the gold mine tailing pond by a novel bacterial co-culture. International Biodeterioration and Biodegradation, 99, 123–128.CrossRefGoogle Scholar
  33. Kuyucak, N., & Akcil, A. (2013). Cyanide and removal options from effluents in gold mining and metallurgical processes. Minerals Engineering, 50–51, 13–29.CrossRefGoogle Scholar
  34. Liang, C. J., Li, J. Y., & Ma, C. J. (2014). Review on cyanogenic bacteria for gold recovery from e-waste. Advanced Materials Research, 878, 355–367.CrossRefGoogle Scholar
  35. Liu, Q., Yang, H., Tong, L., Jin, Z., & Sand, W. (2016a). Fungal degradation of elemental carbon in carbonaceous gold ore. Hydrometallurgy, 160, 90–97.CrossRefGoogle Scholar
  36. Liu, R., Li, J., & Ge, Z. (2016). Review on Chromobacterium violaceum for gold bioleaching from E. Waste. Procedia Environmental Sciences, 31, 947–953.Google Scholar
  37. Logan, T. C., Seal, T., & Brierley, J. A. (2007). Whole ore heap biooxidation of sulfidic gold-bearing ores. In D. E. Rawlings & D. B. Johnson (Eds.), Biomining (pp. 113–138). Berlin: Springer.CrossRefGoogle Scholar
  38. Makhotla, N., van Buuren, C., & Olivier, J. W. (2010). The aster process: Technology development through to piloting, demonstration and commercialization. www.biomin.co.za/pdf/2010aster.
  39. Miller, P. C. (2000). Potential methods for reducing cyanide consumption for bacterial oxidation residues, Internal Document. BacTech Corp.Google Scholar
  40. Miller, P., & Brown, A. (2005). Bacterial oxidation of refractory gold concentrates. Advances in gold ore processing, 15, 371–402. Elsevier.CrossRefGoogle Scholar
  41. Miller, B. P., & Brown, A. R. G. (2014). Bacterial oxidation of refractory gold concentrates. In Adams, M. D. (Ed.), Gold ore processing, project development and operations, p. 359. ElsevierGoogle Scholar
  42. Mudder, T. I., Botz, M. M., & Smith, A. (2001). Chemistry and treatment of cyanidation wastes (pp. 239–281). London: Mining Journal Books Ltd.Google Scholar
  43. Natarajan, K. A. (1992). Bioprocessing for enhanced gold recovery. Mineral Processing and Extractive Metallurgy Review, 8, 143–153.CrossRefGoogle Scholar
  44. Natarajan, K. A. (1993). Biotechnology in gold processing. Bulletin of Materials Science, 16, 501–508.CrossRefGoogle Scholar
  45. Natarajan, K. A. (1998). Microbes, Minerals and Environment. (Bangalore): Geological Survey of India.Google Scholar
  46. Natarajan, K. A. (2018). Biotechnology for gold mining, extraction and waste control. In Biotechnology of metals: Principles, recovery methods and environmental concerns, pp 179–210. Amsterdam: Elsevier.Google Scholar
  47. Neale, J. W., Gericke, M., & Ramcharan, K. (2011). The application of bioleaching to base metal sulfides in southern Africa: Prospects and opportunities. In 6th Southern African Base Metals Conference South African Institute of Mining and Metallurgy.Google Scholar
  48. Niekerk J. V. (2012). Recent advances in the BIOX technology, Newsletter (from WEB).Google Scholar
  49. Olivier, J. W., & Jardine, J. G. (2014). Application of BIOX GIII- Principles during Runruno BIOX plant development, MINEX, MOXCOW, 7–9 Oct 2014.Google Scholar
  50. Olson, G. J., Brierley, J. A., & Brierley, C. L. (2003). Bioleaching review part B: Progress in bioleaching: Applications of microbial processes by the minerals industries. Applied Microbiology and Biotechnology, 63, 249–257.CrossRefGoogle Scholar
  51. Rawlings, D. E. (1997). Biomining: Theory, microbes and industrial processes. Springer.Google Scholar
  52. Rea, M. A., Zammit, C. M., & Reith, F. (2016). Bacterial biofilms on gold grains-implications for geomicrobial transformations of gold. FEMS Microbiology Ecology, 92, 1–11.CrossRefGoogle Scholar
  53. Reith, F. (2002). Interactions of microorganisms with gold in regolith materials from a gold mine near mogo in south eastern New South Wales. In I. C. Roach (Ed.), Regolith and landscapes in Eastern Australia (pp. 107–110).Google Scholar
  54. Reith, F., Lengke, M. F., Falconer, D., Craw, D., Southam, G. (2007a). The geomicrobiology of gold. The ISME Journal, 1, 1–18Google Scholar
  55. Reith, F., Rogers, S. L., McPhail, K. C., & Brugger, J. (2007b). Potential for the utilization of microorganisms in gold processing. In World gold conference, Cairns, Australia.Google Scholar
  56. Reith, F., Brugger, J., Zammit, C. M., Nies, D. H., & Southam, G. (2013). Geobiological cycling of gold: From fundamental process understanding to exploration solutions. Minerals, 3, 367–394.CrossRefGoogle Scholar
  57. Roberto, F. F. (2017). Commercial biooxidation of refractory gold ores-Revisiting Newmont’s successful deployment at Carlin. Minerals Engineering, 106, 2–6.CrossRefGoogle Scholar
  58. Shin, D., Jeong, J., Lee, S., Pandey, B. D., & Lee, J. C. (2013). Evaluation of bioleaching factors on gold recovery from ore by cyanide-producing bacteria. Minerals Engineering, 48, 20–24.CrossRefGoogle Scholar
  59. Shuster, J., & Reith, F. (2018). Reflecting on gold geomicrobiology research: Thoughts and considerations for future endeavours. Minerals, 8(9), 1–12.CrossRefGoogle Scholar
  60. Steyn, B., & Benewoe, V. (2009) A practical example of recovery improvements in a bacterial oxidation plant. In World gold conference, 2009, South African Institute of Mining and Metallurgy.Google Scholar
  61. Thompson, L. C., & MacCulloch, J. R. F. (2004). Biological process for gold recovery. In Bac-Min Conference, Victoria.Google Scholar
  62. Van Aswegen, P. C., Niekerk, J. V., & Olivier, W. (2007). The BIOX™ process for the treatment of refractory gold concentrates. In D. E. Rawlings & D. B. Johnson (Eds.), Biomining. Berlin: Springer.Google Scholar
  63. Van Niekerk, J. (2009). Recent advances in BIOX technology. In Hydrometallurgy conference 2009. Southern African Institute of Mining and Metallurgy.Google Scholar
  64. Van Niekerk, J., Olivier, W., & Van Buuren, C. Complete refractory gold solutions, (from Web: c/users/DELL/Downloads/paper%20(#1).pdf)Google Scholar
  65. Veert, G., & Kroes, P. J. (1993). Development of the delft inclined plate (DIP) bioreactor. Minerals Engineering, 6(8–10), 991–999.Google Scholar
  66. Watling, H. R. (2006). The bioleaching of sulfide minerals with emphasis on copper sulfides—A review. Hydrometallurgy, 84, 81–108.CrossRefGoogle Scholar
  67. Whitlock, J. L., & Smith, G. R. (1989). Operation of Homestakes cyanide biodegradation wastewater system based on multi-variable trend analysis. In W. Y. Jackson (Ed.), Proceedings of the 8th international symposium on biohydrometallurgy (pp. 613–625), CANMET, Ottawa.Google Scholar
  68. Yang, H., Liu, Q., Song, X., & Dong, J. (2013). Research status of carbonaceous matter in carbonaceous gold ores and bio-oxidation pretreatment. Transactions of Nonferrous Metals Society of China, 23, 3405–3411.Google Scholar
  69. Yen, W. T., Amankwah, R. K., & Choi, Y. (2009). Microbial pretreatement of double refractory ore. US 2009/0158893A1 [P] 2009-06-25.Google Scholar
  70. Zammit, C. M., Cook, N., Brugger, J., Ciobanu, C. L., & Reith, F. (2012). The future of biotechnology for gold exploration and processing. Minerals Engineering, 32, 45–53.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Materials EngineeringIndian Institute of ScienceBangaloreIndia

Personalised recommendations