Advertisement

Immobilized Biocatalysts in Bioethanol Production: Scale-up Opportunities for Commercialization

  • Elsa CherianEmail author
  • G. Baskar
Chapter

Abstract

Bioethanol is a form of renewable energy produced from carbohydrate-rich feedstocks. Bioethanol can be generated from universally available crops like hemp, sugarcane, cassava, corn, wheat crops, waste straw, sawdust, etc. It is mostly used as a motor fuel, an additive for gasoline. The blending of bioethanol with petrol helps in overcoming the problems of declining oil supply due to diminishing fossil fuels. Lignocellulosic materials are converted into fermentable sugars by saccharification using cellulase enzyme. The use of free cellulase leads to the loss of enzyme and makes the process expensive. The use of immobilized enzyme is an effective way to obtain stable and reusable enzymes with resistance to different environmental parameters. Immobilization cellulase on nanoparticles improves enzymatic activity due to the synergistic effect of cellulose with certain nanomaterials and enhances stability, reusability, increase in catalytic properties, and limitation of microbial growth. Further liberated glucose can be converted to ethanol by fermentation using free or immobilized yeast cells. The use lignocellulosic materials for bioethanol production will help to reduce the urban waste disposal problem and meet the energy demand in the near future. Thus, the immobilization strategy could improve the bioethanol production economically and commercialized for enhanced bioethanol production.

Keywords

Immobilized Catalyst Lignocellulosic materials Bioethanol production Scale-up 

References

  1. Abraham, R. E., Verma, M. L., Barrow, C. J., & Puri, M. (2014). Suitability of magnetic nanoparticle immobilised cellulases in enhancing enzymatic saccharification of pretreated hemp biomass. Biotechnology for Biofuels, 11(7), 90.  https://doi.org/10.1186/1754-6834-7-90.CrossRefGoogle Scholar
  2. Ahmad, R., & Khare, S. K. (2018). Immobilization of Aspergillus niger cellulase on multiwall carbon nanotubes for cellulose hydrolysis. Bioresource Technology, 252, 72–75.Google Scholar
  3. Ahmad, R., & Sardar, M. (2015a). Enzyme immobilization: An overview on nanoparticles as immobilization matrix. Biochemistry and Analytical Biochemistry, 4, 178.Google Scholar
  4. Ahmad, R., & Sardar, M. (2015b). Enzyme immobilization: An overview on nanoparticles as immobilization matrix. Biochemistry and Analytical Biochemistry, 4, 1–8.Google Scholar
  5. Anazawa, K., Shimotani, K., Manabe, C., Watanabe, H., & Shimizu, M. (2002). High-purity carbon nanotube synthesis method by an arc discharging in magnetic field. Applied Physics Letters, 81, 739–741.CrossRefGoogle Scholar
  6. Andriani, D., Sunwoo, C., Ryu, H. W., Prasetya, B., & Park, D. H. (2012). Immobilization of cellulase from newly isolated strain Bacillus subtilis TD6 using calcium alginate as a support material. Bioprocess and Biosystems Engineering, 35(1–2), 29–33.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Ansari, S. A., & Husain, Q. (2012). Potential applications of enzymesimmobilized on/in nanomaterials. Biotechnology Advances, 30, 512–523.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Asuri, P., Karajanagi, S. S., Sellitto, E., Kim, D.-Y., Kane, R. S., & Dordick, J. S. (2006). Water-soluble carbon nanotube-enzyme conjugates as functional biocatalytic formulations. Biotechnology and Bioengineering, 95, 804–811.Google Scholar
  9. Aubin-Tam, M. E., & Hamad-Schifferli, K. (2008). Structure and function of nanoparticle-protein conjugates. Biomedical Materials, 3, 034001.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Baria, M. P., Nguyen, E., Pace, S. J., Marvin, R. L., & Mojica, E. R. E. (2014). Spectrochemical behavior of enzymes encapsulated within xerogel. Journal of Physical Chemistry & Biophysics, 4, 137.Google Scholar
  11. Behera, S., Mohanty, R. C., & Ray, R. C. (2011). Ethanol production from mahula (Madhucalatifolia L.) flowers with immobilized cells of Saccharomyces cerevisiae in Luffacylindrica L. sponge discs. Applied Energy, 88, 212–215.CrossRefGoogle Scholar
  12. Berna, B.M., & Batista, F. (2006). Enzyme immobilization literature survey methods in Biotechnology: Immobilization of enzymes and cells (2nd ed.), pp. 15–30.Google Scholar
  13. Bhatia, R. K., Kumar, R., Rathour, R. K., Kumar, V., Sharma, V., Rana, N., Thakur, S., & Bhatt, A. K. (2017). Enhancement of cellulose degradation potential of Bacillus sp. Hcb-21 through Mutagenesis. Journal of Microbial and Biochemical Technology 9(6), 257–265.Google Scholar
  14. Bi, S., Zhou, H., & Zhang, S. (2009). Multilayers enzyme-coated carbon nanotubes as biolabel for ultrasensitive chemiluminescence immunoassay of cancer biomarker. Biosensors & Bioelectronics, 24, 2961–2966.CrossRefGoogle Scholar
  15. Borges, D. G., Junior, A. B., Farinas, C. S., Giordano, R. L. C., & Tardioli, P. W. (2014). Enhanced saccharification of sugarcane bagasse using soluble cellulase supplemented with immobilized β-glucosidase. Bioresource Technology, 167, 206–213.CrossRefGoogle Scholar
  16. Botella, C., Diaz, A., Ory, I., Webb, C., & Blandino, A. (2007). Xylanaseand pectinase production by Aspergillus awamori on grape pomace insolid state fermentation. Process Biochemistry, 42, 98–101.CrossRefGoogle Scholar
  17. Brady, D., & Jordan, A. (2009). Advances in enzyme immobilization. Biotechnology Letters, 31, 1639–1650.CrossRefGoogle Scholar
  18. Cantone, S., Ferrario, V., Corici, L., Ebert, C., Fattor, D., Spizzo, P., Gardossi, L. (2013). Efficient immobilisation of industrial biocatalysts: criteria and constraints for the selection of organic polymeric carriers and immobilisation methods. Chemical Society Reviews, 42(15), 6262–6276.Google Scholar
  19. Chen, C.-C., Wu, C.-H., Wu, J.-J., Chiu, C.-C., Wong, C.-H., Tsai, M.-L., & Victor Lin, H.-T. (2015, October). Accelerated bioethanol fermentation by using a novel yeast immobilization technique: Microtube array membrane. Process Biochemistry Volume, 50(10), 1509–1515.Google Scholar
  20. Cherian, E., Dharmendirakumar, M., & Baskar, G. (2015). Immobilization of cellulase onto MnO2 nanoparticles for bioethanol production by enhanced hydrolysis of agricultural waste. Chinese Journal of Catalysis, 36(8), 1223–1229.Google Scholar
  21. Cherian, E., Kalpana, R., Dharmedira Kumar, M., & Baskar, G. (2017). Immobilization of cellulase on cobalt oxide nanoparticles for efficient bioethanol production by simultaneous saccharification and fermentation. International Journal of Modern Science and Technology, 2(12), 397–403.Google Scholar
  22. Cho, E. J., Jung, S., Kim, H. J., Lee, Y. G., Nam, K. C., Lee, H.-J., et al. (2011). Co-immobilization of three cellulases on Au-doped magnetic silica nanoparticles for the degradation of cellulose. Chemical Communications, 48, 886–888.  https://doi.org/10.1039/C2CC16661E.CrossRefPubMedGoogle Scholar
  23. Cho, E. J., Jung, S., Kim, H. J., Lee, Y. G., Nam, K. C., Lee, H.-J., et al. (2012). Co-immobilization of three cellulases on Au-doped magnetic silica nanoparticles for the degradation of cellulose. Chemical Communications, 48, 886–888.CrossRefGoogle Scholar
  24. Choi, G. W., Um, H. J., Kim, Y., et al. (2010). Isolation and characterization of two soil derived yeasts for bioethanol production on Cassava starch. Biomass & Bioenergy, 34, 1223–1231.CrossRefGoogle Scholar
  25. Coleman, J. N., Lotya, M., O’Neill, A., Bergin, S. D., King, P. J., Khan, U., et al. (2011). Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science, 331(6017), 568–571.CrossRefGoogle Scholar
  26. Cruz, J. C., Würges, K., Kramer, M., Pfromm, P. H., Rezac, M. E., et al. (2011). Immobilization of enzymes on fumed silica nanoparticles for applications in nonaqueous media. Methods in Molecular Biology, 743, 147–160.CrossRefGoogle Scholar
  27. Dien, B. S., Cotta, M. A., & Jeffries, T. W. (2003). Bacteria engineered for fuel ethanol production: Current status. Applied Microbiology and Biotechnology, 63, 258–266.CrossRefGoogle Scholar
  28. Dueñas, R., Tengerdy, R.P., & Gutierrez-Correa, M. (1995, May). Cellulase production by mixed fungi in solid-substrate fermentation of bagasse. World Journal of Microbiology and Biotechnology, 11(3), 333–337.Google Scholar
  29. Fenel, F., Zitting, A. J., & Kantelinen, A. (2006, January). Increased alkali stability in Trichoderma reesei endo-1, 4-beta-xylanase II by site directed mutagenesis. Journal of Biotechnology, 121(1), 102–107.Google Scholar
  30. Feng, W., & Ji, P. (2011). Enzymes immobilized on carbon nanotubes. Biotechnology Advances, 29, 889–895.CrossRefGoogle Scholar
  31. Feng, J., Pandey, R. B., Berry, R. J., Farmer, B. L., Naik, R. R., & Heinz, H. (2011). Adsorption mechanism of single amino acid and surfactant molecules to Au 111 surfaces in aqueous solution: design rules for metal-binding molecules. Soft Matter, 7(5), 2113–2120.CrossRefGoogle Scholar
  32. Fu, J., Reinhold, J., & Woodbury, N. W. (2011). Peptide-modified surfaces for enzyme immobilization. PLoS One, 6, e18692.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Fukuda, H., Kondo, A., & Noda, H. (2001). Biodiesel fuel production by transesterification of oils. Journal of Bioscience and Bioengineering, 92(5), 405–416.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Geoghegan, W. D., & Ackerman, G. A. (1977). Adsorption of horseradish peroxidase, ovomucoid and anti-immunoglobulin to colloidal gold for the indirect detection of concanavalin A, wheat germ agglutinin and goat anti-human immunoglobulin G on cell surfaces at the electron microscopic level: a new method, theory and application. Journal of Histochemistry & Cytochemistry, 25, 1187–1200.CrossRefGoogle Scholar
  35. Ghous, T. (2001). Analytical application of immobilized enzymes. Journal of the Chemical Society of Pakistan, 23, 4.Google Scholar
  36. Gokhale, A. A., & Lee, I. (2012). Cellulase immobilized nanostructured supports for efficient saccharification of cellulosic substrates. Topics in Catalysis, 55, 1231–1246.Google Scholar
  37. Grewal, J., Ahmad, R., & Khare, S. K. (2017). Development of cellulase-nanoconjugates with enhanced ionic liquid and thermal stability for in situ lignocellulose saccharification. Bioresource Technology, 242, 236–243.CrossRefGoogle Scholar
  38. Guo, T., Nikolaev, P., Thess, A., Colbert, D., & Smalley, R. (1995). Catalytic growth of single-walled nanotubes by laser vaporization. Chemical Physics Letters, 243, 49–54.CrossRefGoogle Scholar
  39. Guo, R., Ding, M., Zhang, S. L., Xu, G. L., & Zhao, F. K. (2008). Molecularcloning and characterization of two novel cellulase genes from themollusk Ampullaria crossean. Journal of Comparative Physiology, 178(2), 209–215.Google Scholar
  40. Gutiérrez-Rivera, B., Waliszewski-Kubiak, K., Carvajal-Zarrabal, O., & Aguilar-Uscanga, M. G. (2012). Conversion efficiency of glucose/xylose mixtures for ethanol production using Sac-charomycescerevisiae ITV01 and Pichiastipitis NRRL Y-7124. Journal of Chemical Technology & Biotechnology, 87, 263–270.Google Scholar
  41. Hanefeld, U., Gardossi, L., & Magner E. (2009). Understanding enzyme immobilisation. Chemical Society Reviews, 38, 453–468.Google Scholar
  42. Hansen, B. J., Liu, Y., Yang, R., & Wang, Z. (2010). Hybrid nanogenerator for concurrently harvesting biomechanical and biochemical energy. ACS Nano, 4, 3647–3652.Google Scholar
  43. Hargreaves, J. C., Adl, M. S., & Warman, P. R. (2008). Areview of the use of composted municipal solid waste in agriculture. Agriculture, Ecosystems & Environment, 123(1–3), 1–14.CrossRefGoogle Scholar
  44. Hartmann, M., & Kostrov, X. (2013). Immobilization of enzymes on porous silicas–benefits and challenges. Chemical Society Reviews, 42, 6277–6289.CrossRefGoogle Scholar
  45. Hegg, D. A., Radke, L. F., & Hobbs, P. V. (1987). Brock CA and P J Riggan Nitrogen and Sulphur emissions from the burning of forest products near large urban areas. Journal of Geophysical Research, 92, 14701–14709.CrossRefGoogle Scholar
  46. Himmel, M. E., Ruth, M. F., & Wyman, C. E. (1999). Cellulase forcommodity products from cellulosic biomass. Current Opinion in Biotechnology, 10, 358–364.CrossRefGoogle Scholar
  47. Hojnik Podrepsek, G., Primozic, M., Knez, Z., & Habulin, M. (2012). Immobilization of cellulase for industrial production. Chemical Engineering Transactions, 27, 235–240.Google Scholar
  48. Ince, A., Bayramoglu, G., Karagoz, B., Altintas, B., Bicak, N., Arica, M. Y. (2012). A method for fabrication of polyaniline coated polymer microspheres and its application for cellulase immobilization. Chemical Engineering Journal, 189–190, 404–412. Retrieved from  https://doi.org/10.1016/j.cej.2012.02.048.
  49. Ishola, M. M., Isroi, & Taherzadeh, M. J. (2014). Effect of fungal and phosphoric acid pretreatment on ethanol production from oil palm empty fruit bunches (OPEFB). Bioresource Technology, 165, 9–12.Google Scholar
  50. Jacobs, C. B., Peairs, M. J., & Venton, B. J. (2010). Review: Carbon nanotube based electrochemical sensors for biomolecules. Analytica Chimica Acta, 662, 105–127.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Jagtap, S., & Rao, M. (2005). Purification and properties of a lowmolecular weight 1, 4-beta-d-glucanglucohydrolase having one active site for carboxymethylcellulose and xylan from an alkalothermophilicThermomonosporasp. Biochemical and Biophysical Research Communications, 329(1), 111–116.Google Scholar
  52. Jayusa, N., Mayzuhroh, A., Arindhani, S., & Caroenchai, C. (2016). Studies on bioethanol production of commercial baker’s and alcohol yeast under aerated culture using sugarcane molasses as the media. Agriculture and Agricultural Science Procedia, 9, 493–499.CrossRefGoogle Scholar
  53. Jegannathan, K. R., Abang, S., Poncelet, D., Chan, E. S., & Ravindra, P. (2008). Production of biodiesel using immobilized lipase—A critical review. Critical Reviews in Biotechnology, 28, 253–264.CrossRefGoogle Scholar
  54. Jianliang, Y., Zhang, X., & Tan, T. (2007). An novel immobilization method of Saccharomyces cerevisiae to sorghum bagasse for ethanol production. Journal of Biotechnology, 129(3), 415–420.Google Scholar
  55. Jiaxing, X., Sheng, Z., Wang, X., Liu, X., Xia, J., Xiong, P., et al. (2016). Enhancement in ionic liquid tolerance of cellulase immobilized on PEGylated graphene oxide nanosheets: Application in saccharification of lignocellulose. Bioresource Technology, 200, 1060–1064.CrossRefGoogle Scholar
  56. Joshi, K. A., Prouza, M., & Kum, M. (2006). V-type nerve agent detectionusing a carbon nanotube amperometric enzyme electrode. Analytical Chemistry, 78, 331–336.CrossRefGoogle Scholar
  57. Karagoz, P., & Ozkan, M. (2014). Ethanol production from wheat straw by Saccharomyces cerevisiae and Scheffersomycesstipitis co-culture in batch and continuous system. Bioresource Technology, 158, 286–293.Google Scholar
  58. Kasavi, C., Finore, I., Lama, L., et al. (2012). Evaluation of industrial Saccharomyces cerevisiae strains for ethanol production from biomass. Biomass & Bioenergy, 45, 230–238.CrossRefGoogle Scholar
  59. Keighron, J. D., & Keating, C. D. (2010). Enzyme: Nanoparticle bioconjugates with two sequential enzymes: Stoichiometry and activity of malate dehydrogenase and citrate synthase on Au nanoparticles. Langmuir, 26, 18992–19000.CrossRefPubMedPubMedCentralGoogle Scholar
  60. Khoshnevisan, K., Vakhshiteh, F., Barkhi, M., Baharifar, H., Poor Akbar, E., Zari, N., Stamatis, H., & Bordbar, A.-K. (2017). Immobilization of cellulase enzyme onto magnetic nanoparticles: Applications and recent advances. Molecular Catalysis, 442, 66–73.Google Scholar
  61. Kim, J. H., Ryu, J., Huh, I. Y., et al. (2014). Ethanol production from galactose by a newly isolated Saccharomyces cerevisiae KL17. Bioprocess and Biosystems Engineering, 37, 1871–1878.CrossRefGoogle Scholar
  62. Kourkoutas, Y., Bekatorou, A., Ibrahim, M., Banat Ibrahim, M., & Show, B. (2004). Immobilization technologies and support materials suitable in alcohol beverages production: A review. Food Microbiology, 21(4), 377–397.Google Scholar
  63. Kumari, R., & Pramanik, K. (2013). Bioethanol production from Ipomea Carnea biomass using a potential hybrid yeast strain. Applied Biochemistry and Biotechnology, 171, 1771–1785.CrossRefGoogle Scholar
  64. Lacaux, J.P., Loemba-Ndembi, J., Lefeivre, B., Cros, B., & Delmas, R. (1992). Biogenic emissions and biomass burning influences on the chemistry of the fogwater and stratiform precipitations in the African equatorial forest. Atmospheric Environment, 26(A/4), 541–551.Google Scholar
  65. Lan, D., Li, B., & Zhang, Z. (2008). Chemiluminescence flow biosensor for glucose based on gold nanoparticle-enhanced activities of glucose oxidase and horseradish peroxidase. Biosensors and Bioelectronics, 24, 940–944.CrossRefGoogle Scholar
  66. Laopaiboon, L., & Laopaiboon, P. (2012). Ethanol production from sweet sorghum juice in repeated-batch fermentation by Sac-charomycescerevisiae immobilized on corncob. World Journal of Microbiology & Biotechnology, 28, 559–566.CrossRefGoogle Scholar
  67. Li, Y., Wang, X.-Y., Zhang, R.-Z., Zhang, X.-Y., Liu, W., Xu, X.-M., et al. (2014). Molecular imprinting and immobilization of cellulase onto magnetic Fe3O4 and SiO2 nanoparticles. Journal of Nanoscience and Nanotechnology, 14, 2931–2936.  https://doi.org/10.1166/jnn.2014.8625.CrossRefPubMedGoogle Scholar
  68. Li, Y., Wang, X.-Y., Jiang, X.-P., Ye, J.-J., Zhang, Y.-W., & Zhang, X.-Y. (2015). Fabrication of graphene oxide decorated with Fe3O4@SiO2 for immobilization of cellulase. Journal of Nanoparticle Research, 17, 8.CrossRefGoogle Scholar
  69. Liao, H., Chen, D., Yuan, L., Zheng, M., Zhu, Y., & Liu, X. (2010). Immobilized cellulase by polyvinylalcohol/Fe2O3 magnetic nanoparticle to degrade microcrystallinecellulose. Carbohydrate Polymers, 82, 600–604.CrossRefGoogle Scholar
  70. Lin, Y., Zhang, W., Li, C., Sakakibara, K., & Tanaka, S. (2012). Factors affecting ethanol fermentation using Saccharomyces cerevisiae BY4742. Biomass and Bioenergy, 47, 395–401.CrossRefGoogle Scholar
  71. Liu, Y., Dong, X., & Chen, P. (2012). Biological and chemical sensors based on graphene materials. Chemical Society Reviews, 41, 2283–2307.Google Scholar
  72. Makhongela, H., Glowacka, A., Agarkar, V., Sewell, B., Weber, B., Cameron, R., et al. (2007). A novel thermostable nitrilase superfamily amidase from Geobacillus pallidus showing acyl transfer activity. Applied Microbiology and Biotechnology, 75, 801–811.CrossRefGoogle Scholar
  73. Matsuura, K., Saito, T., Okazaki, T., Ohshima, S., Yumura, M., & Iijima, S. (2006). Selectivity of water-soluble proteins in single-walled carbon nanotube dispersions. Chemical Physics Letters, 429, 497–502.Google Scholar
  74. Meena, K., & Raja, T. K. (2004). Immobilization of yeast invertase by gel entrapment. Indian Journal of Biotechnology, 3, 606–608.Google Scholar
  75. Mubarak, N. M., Wong, J. R., Tan, K. W., Sahu, J. N., Abdullah, E. C., Jayakumar, N. S., & Ganesan, P. (2014). Immobilization of cellulase enzyme on functionalized multiwall carbon nanotubes. Journal of Molecular Catalysis B: Enzymatic, 107, 124–131.Google Scholar
  76. Murray, P., Aro, N., Collins, C., Grassick, A., Penttilä, M., Saloheimo, M., et al. (2004). Expression in Trichoderma reesei and characterisation of a thermostable family 3 beta-glucosidase from the moderately thermophilic fungus Talaromyces emersonii. Protein Expression and Purification, 38(2), 248–257.CrossRefPubMedPubMedCentralGoogle Scholar
  77. Murat, I., & Mustafa, Y. (2011). Production of bioethanol by immobilized Saccharomyces cerevisiae onto modified sodium alginate gel. Journal of Chemical Technology and Biotechnology, 86(12), 1548–1554.Google Scholar
  78. Mussato, S. I., Machado, E. M. S., Carneiro, L. M., & Teixeira, J. A. (2012). Sugar metabolism and ethanol production by different yeast strains from coffee industry wastes hydrolysates. Applied Energy, 92, 763–768.Google Scholar
  79. Nagendran, R. (2011). Agricultural waste and pollution. Waste a handbook for management (pp. 341–355).Google Scholar
  80. Najafpour, G., Younesi, H., & Syahidah Ku Ismail, K. (2004) Ethanol fermentation in an immobilized cell reactor using Saccharomyces cerevisiae. Bioresource Technology, 92(3), 251–260.Google Scholar
  81. Nand, L. S., Pradeep, S., & Mishr, P. K. (2009). Studies on ethanol production using immobilized cells of Kluyveromyces thermotolerans in a packed bed reactor. Journal of Scientific and Industrial Research, 68, 617–623.Google Scholar
  82. Narra, M., Dixit, G., Divecha, J., Madamwar, D., & Shah, A. (2012). Production of cellulases by solid state fermentation with Aspergillus terreus and enzymatic hydrolysis of mild alkali-treated rice straw. Bioresource Technology, 121, 355–361.CrossRefGoogle Scholar
  83. Nelson, J. M., & Griffin, E. G. (1916). Adsorption of invertase. Journal of the American Chemical Society, 38(5), 1109–1115.Google Scholar
  84. Olofsson, K., Wiman, M., & Liden, G. (2010). Controlled feeding of cellulases improves conversion of xylose in simultaneoussaccharification and cofermentation for bioethanol production. Journal of Biotechnology, 145, 168–175.CrossRefGoogle Scholar
  85. Pacheco, A. M., Gondim, D. R., Gonҫalves, L. R. B. (2010). Ethanol production by fermentation using immobilized cells of Saccharomyces cerevisiae in cashew apple bagasse. Applied Biochemistry and Biotechnology, 161, 209–217.Google Scholar
  86. Pedrosa, V. A., Paliwal, S., Balasubramanian, S., Nepal, D., Davis, V., Wild, J., et al. (2010). Enhanced stability of enzyme organophosphate hydrolase interfaced on the carbon nanotubes. Colloids Surfaces B Biointerfaces, 77, 69–74.CrossRefGoogle Scholar
  87. Perwez, M., Ahmad, R., & Sardar, M. (2017). A reusable multipurpose magnetic nanobiocatalyst for industrial applications. International Journal of Biological Macromolecules, 103, 16–24.Google Scholar
  88. Phoowit, B., Savitree, L., & Muenduen, P. (2011). Continuous ethano production using immobilized yeast cell entrapped in loofa reinforced alginate carriers. Brazilian Journal of Microbiology, 42(2).Google Scholar
  89. Piccinino, D., Delfino, M., Botta, G., Crucianelli, M., Grossi, V., Passacantando, M., Antiochia, R., Favero, G., & Saladino, R. (2015). Highly efficient synthesis of aldehydes by layer by layer multi-walled carbon nanotubes (MWCNTs) laccase mediator systems. Applied Catalysis A: General, 499, 77–88.Google Scholar
  90. Pranner, J. (1979). Environmental microbiology and waste utilization. In Emejuaiwe (Ed.), G/AMV Proceedings (pp. 67–69). London, UK: Academic Press.Google Scholar
  91. Prasertwasu, S., Khumsupan, D., Komolwanich, T., Chaisuwan, T., Luengnaruemitchai, A., et al. (2014). Efficient process for ethanol production from Thai Mission grass (Pennisetumpolystachion). Bioresource Technology, 163, 152–159.CrossRefGoogle Scholar
  92. Qi, B. C., Aldrich, C., Lorenzen, L., & Wolfaardt, G. W. (2005). Acidogenic fermentation of lignocellulosic substrate with activated sludge. Chemical Engineering Communications, 192(9), 1221–1242.CrossRefGoogle Scholar
  93. Razmovski, R., & Vucurovi, V. (2011). Ethanol production from sugar beet molasses by S. cerevisiae entrapped in an alginate-maize stem ground tissue matrix. Enzyme and Microbial Technology, 48, 378–385.CrossRefGoogle Scholar
  94. Resasco, D., Alvarez, W., Pompeo, F., Balzano, L., Herrera, J., Kitiyanan, B., et al. (2002). A scalable process for production of single-walled carbon nanotubes (SWNTS) by catalytic disproportionation of CO on a solid catalyst. Journal of Nanoparticle Research, 4, 131–136.CrossRefGoogle Scholar
  95. Romano, S. D., González Suárez, E., Laborde, M. A. (2006). Biodiesel. In: Combustibles alternativos (2nd ed.) Ediciones Cooperativas, Buenos Aires.Google Scholar
  96. Roth, H.-C., Schwaminger, S. P., Peng, F., & Berensmeier, S. (2016). Immobilization of cellulase on magnetic nanocarriers. ChemistryOpen, 5(3), 183–187.CrossRefPubMedPubMedCentralGoogle Scholar
  97. Sadhu, S., Kumar Ghosh, P., Aditya, G., Kanti Maiti, T. (2014, October). Optimization and strain improvement by mutation for enhanced cellulase production by Bacillus sp. (MTCC10046) isolated from cow dung. Journal of King Saud University—Science, 26(4), 323–332.Google Scholar
  98. Santos, E. L., Rostro-Alanís, M., Parra-Saldívar, R., & Alvarez, A. J. (2018). A novel method for bioethanol production using immobilized yeast cells in calcium-alginate films and hybrid composite pervaporation membrane. Bioresource Technology, 247, 165–173.Google Scholar
  99. Schmid, G. (2004). Nanoparticles: From theory to applications. Wiley Online Library.Google Scholar
  100. Shen, F., Zeng, Y., Deng, S., & Liu, R. (2011). Bioethanol production from sweet sorghum stalk juice with immobilized yeast. Procedia Environmental Sciences, 11, 782–789.CrossRefGoogle Scholar
  101. Shim, M., Kam, N. W. S., Chen, R. J., Li, Y. M., & Dai, H. J. (2002). Functionalization of carbon nanotubes for biocompatibility and biomolecular recognition. Nano Letters, 2, 285–288.CrossRefGoogle Scholar
  102. Spahn, C., & Minteer, S. D. (2008). Enzyme immobilization in biotechnology. Recent Patents on Engineering, 2(3), 195–200.CrossRefGoogle Scholar
  103. Subramanian, A., Kennel, S. J., Oden, P. I., Jacobson, K. B., Woodward, J., & Doktycz, M. J. (1999). Comparison of techniques for enzymeimmobilization on silicon supports—Effect of cross-linker chain lengthon enzyme activity. Enyzme and Microbial Technology, 24(1), 26–34.CrossRefGoogle Scholar
  104. Sun, H., Xiangyang, G., Zhikui, H., & Ming, P. (2010). Cellulaseproduction by Trichoderma sp. on apple pomace under solid statefermentation. African Journal of Biotechnology, 9(2), 163–166.Google Scholar
  105. Tao, Q.-L., Li, Y., Shi, Y., Liu, R.-J., Zhang, Y.-W., & Guo, J. (2016). Application of molecular imprinted magnetic Fe3O4@SiO2 nanoparticles for selective immobilization of cellulase. Journal of Nanoscience and Nanotechnology, 16(6), 6055–6060.CrossRefGoogle Scholar
  106. Tsai, Y., & Chiu, C. C. (2007). Amperometric biosensors based on multiwalled carbon nanotube-nafion-tyrosinase nanobiocomposites for the determination of phenolic compounds. Sensors and Actuators B, 125, 10–16.Google Scholar
  107. Ungurean, M., Paul, C., & Peter, F. (2013). Cellulase immobilized by sol-gel entrapment for efficient hydrolysis of cellulose. Bioprocess and Biosystems Engineering, 36(10), 1327–1338.  https://doi.org/10.1007/s00449-012-0835-9. Epub 2012 Oct 13.CrossRefPubMedGoogle Scholar
  108. Verma, M. L., Naebe, M., Barrow, C. J., & Puri, M. (2013). Enzyme immobilisation on amino-functionalised multi-walled carbon nanotubes: structural and biocatalytic characterisation. PLoS One, 8, 1–9.CrossRefGoogle Scholar
  109. Vertegel, A. A., Siegel, R. W., & Dordick, J. S. (2004). Silica nanoparticle size influences the structure and enzymatic activity of adsorbed lysozyme. Langmuir, 20, 6800–6807.CrossRefGoogle Scholar
  110. Wang, L., Wei, L., Chen, Y., & Jiang, R. (2010). Specific and reversible immobilization of NADH oxidase on functionalized carbon nanotubes. Journal of Biotechnology, 150, 57–63.Google Scholar
  111. Wang, H., Chhowalla, M., Sano, N., Jia, S., & Amaratunga, G. A. J. (2004). Large-scale synthesis of single-walled carbon nanohorn by submerged arc. Nanotechnology, 15, 546–550. Institute of Physics Publishing.Google Scholar
  112. Wang, X.-Y., Jiang, X.-P., Li, Y., Zeng, S., & Zhang, Y.-W. (2015). Preparation Fe3O4 and chitosan magnetic particles for covalent immobilization of lipase from Thermomyces lanuginosus. International Journal of Biological Macromolecules, 75, 44–50.  https://doi.org/10.1016/j.ijbiomac.2015.01.020.CrossRefPubMedGoogle Scholar
  113. Westerman, P. W., & Bicudo, J. R. (2005). Management considerations for organic waste use in agriculture. Bioresource Technology, 96, 215–221.CrossRefGoogle Scholar
  114. Willner, I., Yan, Y. M., Willner, B., & Tel-Vered, R. (2009). Integrated enzyme-based biofuel cells—A review. Fuel Cells, 1, 7–24.CrossRefGoogle Scholar
  115. Winkelhausen, E., Velickova, E., Amartey, S. A., & Kuz-manova, S. (2010). Ethanol production using immobilized Saccha-romycescerevisiae in lyophilized cellulose gel. Applied Biochemistry and Biotechnology, 162, 2214–2220.CrossRefGoogle Scholar
  116. Won, Y. H., Jang, H. S., Kim, S. M., Stach, E., Ganesana, M., et al. (2010). Biomagnetic glasses: Preparation, characterization, and biosensor applications. Langmuir, 26, 4320–4326.CrossRefGoogle Scholar
  117. Yoshimoto, M., Li, C., Matsunaga, T., Nakagawa, H., Fukunaga, K., & Nakao, K. (2006). Optimal preparation of immobilized liposome-bound cellulase for hydrolysis of insoluble cellulose in an external loop airlift bioreactor. Biotechnology Progress, 22(2), 459–464.Google Scholar
  118. Zang, L., Qiu, J., Wu, X., Zhang, W., Sakai, E., & Wei, Y. (2014). Preparation of magnetic chitosan nanoparticles as support for cellulase immobilization. Industrial and Engineering Chemistry Research, 53, 3448–3454.  https://doi.org/10.1021/ie404072s.CrossRefGoogle Scholar
  119. Zhang, B., Xing, Y., Li, Z., Zhou, H., Mu, Q., & Yan, B. (2009). Functionalized carbon nanotubes specifically bind to α-chymotrypsin’s catalytic site and regulate its enzymatic function. Nano Letters, 9, 2280–2284.Google Scholar
  120. Zhang, D., Hegab, H. E., Lvov, Y., Dale Snow, L., & Palmer, J. (2016a). Immobilization of cellulase on a silica gel substrate modified using a 3-APTES self-assembled monolayer. Springer Plus, 5(1), 48.Google Scholar
  121. Zhang, Q., Kang, J., Yang, B., Zhao, L., Hou, Z., & Tang, B. (2016b). Immobilized cellulase on Fe3O4 nanoparticles as a magnetically recoverable biocatalyst for the decomposition of corncob. Chinese Journal of Catalysis, 37(3), 389–397.Google Scholar
  122. Zhao, J., & Xia, L. (2010). Bioconversion of corn stover hydrolysate to ethanol by a recombinant yeast strain. Fuel Processing Technology, 91, 1807–1811.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Food TechnologySaintgits College of EngineeringKottayamIndia
  2. 2.Department of BiotechnologySt. Joseph’s College of EngineeringChennaiIndia

Personalised recommendations