Advertisement

The Main River and Main–Danube Canal: A Hub for Ponto-Caspian Parasite Invasion

  • K. G. AltEmail author
  • S. Emde
  • J. Kochmann
  • D. D. Doerge
  • S. Klimpel
Chapter
Part of the Parasitology Research Monographs book series (Parasitology Res. Monogr., volume 12)

Abstract

The Main and the Main–Danube Canal create a link between the North Sea and the Black Sea, which facilitates transfers and transportation of goods over long distances. At the same time, they act as a gateway for species, which become undeliberately introduced beyond former ranges, especially from the Ponto-Caspian region. Once species have arrived in their new habitat in Germany, they might invade native freshwater communities. In addition, these non-indigenous species can act as carriers of parasites and pathogens and lead to changes in local food webs. Here, few major examples of recent invasions of species in the Main river system are presented.

Keywords

Neogobius melanostomus Dikerogammarus villosus Invasion corridor River system Host–parasite interaction 

References

  1. Bij de Vaate A, Klink AG (1995) Dikerogammarus villosus Sowinsky (Crustacea: Gammaridae) a new immigrant in the Dutch part of the lower Rhine. Lauterbornia 20:51–54Google Scholar
  2. Bij de Vaate A, Jazdzewski K, Ketelaars HA et al (2002) Geographical patterns in range extension of Ponto-Caspian macroinvertebrate species in Europe. Can J Fish Aquat Sci 59:1159–1174.  https://doi.org/10.1139/f02-098 CrossRefGoogle Scholar
  3. Borcherding J, Staas S, Krüger S et al (2011) Non-native Gobiid species in the lower River Rhine (Germany): recent range extensions and densities. J Appl Ichthyol 27:153–155.  https://doi.org/10.1111/j.1439-0426.2010.01662.x CrossRefGoogle Scholar
  4. Borcherding J, Dolina M, Heermann L et al (2013) Feeding and niche differentiation in three invasive gobies in the lower Rhine, Germany. Limnologica 43:49–58.  https://doi.org/10.1016/j.limno.2012.08.003 CrossRefGoogle Scholar
  5. Diéguez-Uribeondo J (2006) The dispersion of Aphanomyces astaci-carrier Pacifastacus lenuisculus by humans represents the main cause of disappearance of the indigenous crayfish Austropotamobius pallipes in Navarra. Bull Fr Pêche Piscic 380–381:1303–1312.  https://doi.org/10.1051/kmae:2006036 CrossRefGoogle Scholar
  6. Dolejska M, Masarikova M, Dobiasova H et al (2016) High prevalence of Salmonella and IMP-4-producing Enterobacteriaceae in the silver gull on Five Islands, Australia. J Antimicrob Chemother 71:63–70.  https://doi.org/10.1093/jac/dkv306 CrossRefPubMedGoogle Scholar
  7. Emde S, Rueckert S, Palm HW, Klimpel S (2012) Invasive Ponto-Caspian amphipods and fish increase the distribution range of the acanthocephalan Pomphorhynchus tereticollis in the River Rhine. PLoS One 7:e53218.  https://doi.org/10.1371/journal.pone.0053218 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Emde S, Kochmann J, Kuhn T et al (2014a) Getting what is served? Feeding ecology influencing parasite-host interactions in invasive round goby Neogobius melanostomus. PLoS One 9:e109971.  https://doi.org/10.1371/journal.pone.0109971 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Emde S, Rueckert S, Kochmann J et al (2014b) Nematode eel parasite found inside acanthocephalan cysts - a “Trojan horse” strategy? Parasit Vectors 7:504.  https://doi.org/10.1186/s13071-014-0504-8 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Filipová L, Petrusek A, Matasová K et al (2013) Prevalence of the crayfish plague pathogen Aphanomyces astaci in populations of the signal crayfish Pacifastacus leniusculus in France: evaluating the threat to native crayfish. PLoS One 8:e70157.  https://doi.org/10.1371/journal.pone.0070157 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Francová K, Ondračková M, Polačik M, Jurajda P (2011) Parasite fauna of native and non-native populations of Neogobius melanostomus (Pallas, 1814) (Gobiidae) in the longitudinal profile of the Danube River. J Appl Ichthyol 27:879–886.  https://doi.org/10.1111/j.1439-0426.2010.01582.x CrossRefGoogle Scholar
  12. Harka Á, Biró P (2007) New patterns in Danubian distribution of Ponto-Caspian gobies–a result of global climatic change and/or canalization. Electron J Ichthyol 1:1–14Google Scholar
  13. Heinz P (2015) Was sind gebietsfremde Krebsarten und welche Gefahren gehen von ihnen in unseren Gewässern aus? Regierungspräsidium Darmstadt, Dezernat V 51.1 - Landwirtschaft, Fischerei und internationaler Artenschutz. https://rp-darmstadt.hessen.de/sites/rp-darmstadt.hessen.de/files/content-downloads/Flyer%20Krebspest.pdf. Accessed 15 Mar 2019
  14. Heitlinger EG, Laetsch DR, Weclawski U et al (2009) Massive encapsulation of larval Anguillicoloides crassus in the intestinal wall of Japanese eels. Parasit Vectors 2:48.  https://doi.org/10.1186/1756-3305-2-48 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Hembach N, Schmid F, Alexander J et al (2017) Occurrence of the mcr-1 Colistin resistance gene and other clinically relevant antibiotic resistance genes in microbial populations at different municipal wastewater treatment plants in Germany. Front Microbiol 8:1282.  https://doi.org/10.3389/fmicb.2017.01282 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Heudorf U, Götz E (2018) Oberflächengewässer in Frankfurt am Main 1996–2017 – Bericht zur hygienischen Qualität. Gesundheitsamt, Frankfurt am MainGoogle Scholar
  17. Hohenadler MA, Honka KI, Emde S et al (2018) First evidence for a possible invasional meltdown among invasive fish parasites. Sci Rep 8:15085.  https://doi.org/10.1038/s41598-018-33445-4 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Jussila J, Makkonen J, Vainikka A et al (2011) Latent crayfish plague (Aphanomyces astaci) infection in a robust wild noble crayfish (Astacus astacus) population. Aquaculture 321:17–20.  https://doi.org/10.1016/j.aquaculture.2011.08.026 CrossRefGoogle Scholar
  19. Kittinger C, Lipp M, Baumert R et al (2016) Antibiotic resistance patterns of Pseudomonas spp. isolated from the River Danube. Front Microbiol 7:586.  https://doi.org/10.3389/fmicb.2016.00586 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Kley A, Maier G (2006) Reproductive characteristics of invasive gammarids in the Rhine-Main-Danube catchment, South Germany. Limnologica 36:79–90.  https://doi.org/10.1016/j.limno.2006.01.002 CrossRefGoogle Scholar
  21. Knopf K (2006) The swimbladder nematode Anguillicola crassus in the European eel Anguilla anguilla and the Japanese eel Anguilla japonica: differences in susceptibility and immunity between a recently colonized host and the original host. J Helminthol 80:129–136.  https://doi.org/10.1079/JOH2006353 CrossRefPubMedGoogle Scholar
  22. Knopf K, Mahnke M (2004) Differences in susceptibility of the European eel (Anguilla anguilla) and the Japanese eel (Anguilla japonica) to the swim-bladder nematode Anguillicola crassus. Parasitology 129:491–496.  https://doi.org/10.1017/S0031182004005864 CrossRefPubMedGoogle Scholar
  23. Krisp H, Maier G (2005) Consumption of macroinvertebrates by invasive and native gammarids: a comparison. J Limnol 64:55–59.  https://doi.org/10.4081/jlimnol.2005.55 CrossRefGoogle Scholar
  24. Kümmerer K (2009a) Antibiotics in the aquatic environment – a review – part I. Chemosphere 75:417–434.  https://doi.org/10.1016/j.chemosphere.2008.11.086 CrossRefPubMedGoogle Scholar
  25. Kümmerer K (2009b) Antibiotics in the aquatic environment – a review – part II. Chemosphere 75:435–441.  https://doi.org/10.1016/j.chemosphere.2008.12.006 CrossRefPubMedGoogle Scholar
  26. Kvach Y (2005) A comparative analysis of helminth faunas and infection parameters of ten species of gobiid fishes [Actinopterygii: Gobiidae] from the North-Western Black Sea. Acta Ichthyol Piscat 2:103–110CrossRefGoogle Scholar
  27. Kvach Y, Skóra KE (2007) Metazoa parasites of the invasive round goby Apollonia melanostoma (Neogobius melanostomus) (Pallas) (Gobiidae: Osteichthyes) in the Gulf of Gdańsk, Baltic Sea, Poland: a comparison with the Black Sea. Parasitol Res 100:767–774.  https://doi.org/10.1007/s00436-006-0311-z CrossRefPubMedGoogle Scholar
  28. Kvach Y, Stepien CA (2008) Metazoan Parasites of introduced round and tubenose gobies in the Great Lakes: support for the “enemy release hypothesis”. J Great Lakes Res 34:23–35.  https://doi.org/10.3394/0380-1330(2008)34[23:MPOIRA]2.0.CO;2 CrossRefGoogle Scholar
  29. Lefebvre F, Wielgoss S, Nagasawa K, Moravec F (2012) On the origin of Anguillicoloides crassus, the invasive nematode of anguillid eels. Aquat Invasions 7:443–453.  https://doi.org/10.3391/ai.2012.7.4.001 CrossRefGoogle Scholar
  30. Machkevsky VK, Mordinova TN, Parukhin AM (1990) Gelmintofauna bychkov Yegorlytskogo zaliva i oz. Ekol Morya 36:69–75Google Scholar
  31. Müller JC, Schramm S, Seitz A (2002) Genetic and morphological differentiation of Dikerogammarus invaders and their invasion history in Central Europe. Freshw Biol 47:2039–2048.  https://doi.org/10.1046/j.1365-2427.2002.00944.x CrossRefGoogle Scholar
  32. Müller H, Sib E, Gajdiss M et al (2018) Dissemination of multi-resistant Gram-negative bacteria into German wastewater and surface waters. FEMS Microbiol Ecol 94:fiy057.  https://doi.org/10.1093/femsec/fiy057 CrossRefGoogle Scholar
  33. Münderle M, Taraschewski H, Klar B et al (2006) Occurrence of Anguillicola crassus (Nematoda: Dracunculoidea) in Japanese eels Anguilla japonica from a river and an aquaculture unit in SW Taiwan. Dis Aquat Org 71:101–108.  https://doi.org/10.3354/dao071101 CrossRefPubMedGoogle Scholar
  34. Ondračková M, Dávidová M, Pečínková M et al (2005) Metazoan parasites of Neogobius fishes in the Slovak section of the River Danube. J Appl Ichthyol 21:345–349.  https://doi.org/10.1111/j.1439-0426.2005.00682.x CrossRefGoogle Scholar
  35. Ondračková M, Valová Z, Hudcová I et al (2015) Temporal effects on host-parasite associations in four naturalized goby species living in sympatry. Hydrobiologia 746:233–243.  https://doi.org/10.1007/s10750-014-1967-5 CrossRefGoogle Scholar
  36. Pöckl M (2007) Strategies of a successful new invader in European fresh waters: fecundity and reproductive potential of the Ponto-Caspian amphipod Dikerogammarus villosus in the Austrian Danube, compared with the indigenous Gammarus fossarum and G. roeseli. Freshw Biol 52:50–63.  https://doi.org/10.1111/j.1365-2427.2006.01671.x CrossRefGoogle Scholar
  37. Roche KF, Janač M, Jurajda P (2013) A review of Gobiid expansion along the Danube-Rhine corridor – geopolitical change as a driver for invasion. Knowl Manag Aquat Ecosyst 411:01.  https://doi.org/10.1051/kmae/2013066 CrossRefGoogle Scholar
  38. Schlag E (2014) Ergebnisse der Fischbestandserhebung in Hessen. In: Hessisches Landesamt für Umwelt und Geologie (ed) Hessisches Landesamt für Umwelt und Geologie – Jahresbericht 2013. Wiesbaden, pp 27–38Google Scholar
  39. Schleutner M, Schleutner A, Potel S, Banning M (1994) Dikerogammarus haemobaphes (Eichwald 1841) (Gammaridae) aus der Donau erreicht über den Main-Donau-Kanal den Main [Dikerogammarus haemobaphes (Eichwald 1841) a crustacean of Danube origin proved as newcomer in the River Main]. Lauterbornia 19:155–159Google Scholar
  40. Schrimpf A, Maiwald T, Vrålstad T et al (2013) Absence of the crayfish plague pathogen (Aphanomyces astaci) facilitates coexistence of European and American crayfish in Central Europe. Freshw Biol 58:1116–1125.  https://doi.org/10.1111/fwb.12112 CrossRefGoogle Scholar
  41. Strand DA, Jussila J, Viljamaa-Dirks S et al (2012) Monitoring the spore dynamics of Aphanomyces astaci in the ambient water of latent carrier crayfish. Vet Microbiol 160:99–107.  https://doi.org/10.1016/j.vetmic.2012.05.008 CrossRefPubMedGoogle Scholar
  42. Strand DA, Jussila J, Johnsen SI et al (2014) Detection of crayfish plague spores in large freshwater systems. J Appl Ecol 51:544–553.  https://doi.org/10.1111/1365-2664.12218 CrossRefGoogle Scholar
  43. Svoboda J, Kozubíková-Balcarová E, Kouba A et al (2013) Temporal dynamics of spore release of the crayfish plague pathogen from its natural host, American spiny-cheek crayfish (Orconectes limosus), evaluated by transmission experiments. Parasitology 140:792–801.  https://doi.org/10.1017/S0031182012002223 CrossRefPubMedGoogle Scholar
  44. Terech-Majewska E, Schulz P, Siwicki AK (2015) Influence of nematode Anguillicoloides crassus infestation on the cellular and humoral innate immunity in European eel (Anguilla anguilla L.). Cent Eur J Immunol 40:127–131.  https://doi.org/10.5114/ceji.2015.52824 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Tittizer T (1996) Vorkommen und Ausbreitung aquatischer Neozoen (Makrozoobenthos) in den Bundeswasserstraßen. In: Gebhart H, Kinzelbach R, Schmidt-Fischer S (eds) Gebietsfremde Tierarten. Ecomed, Fellbach, pp 49–86Google Scholar
  46. Vergara A, Pitart C, Montalvo T et al (2017) Prevalence of extended-spectrum-β-lactamase- and/or carbapenemase-producing Escherichia coli isolated from yellow-legged gulls from Barcelona, Spain. Antimicrob Agents Chemother 61:e02071-16.  https://doi.org/10.1128/AAC.02071-16 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Vittecoq M, Laurens C, Brazier L et al (2017) VIM-1 carbapenemase-producing Escherichia coli in gulls from southern France. Ecol Evol 7:1224–1232.  https://doi.org/10.1002/ece3.2707 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Wittwer C, Stoll S, Strand D et al (2018) eDNA-based crayfish plague monitoring is superior to conventional trap-based assessments in year-round detection probability. Hydrobiologia 807:87–97.  https://doi.org/10.1007/s10750-017-3408-8 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • K. G. Alt
    • 1
    Email author
  • S. Emde
    • 2
  • J. Kochmann
    • 1
  • D. D. Doerge
    • 1
  • S. Klimpel
    • 1
  1. 1.Institute of Ecology, Evolution and Diversity, Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberg Gesellschaft für Naturforschung (SGN)Goethe University (GU)Frankfurt am MainGermany
  2. 2.Department 26: Fisheries Ecology, North Rhine Westphalian State Agency for NatureEnvironment and Consumer ProtectionKirchhundemGermany

Personalised recommendations