Advertisement

Brazil’s Big River Projects and Their Impact on the Occurrence of Tropical Diseases

Big River Projects and Tropical Diseases in Brazil
  • Alberto Novaes Ramos Jr
  • Marta Cristhiany Cunha Pinheiro
  • Sharmênia Araújo Soares Nuto
  • Edenilo Baltazar Barreira Filho
  • Jorg Heukelbach
Chapter
Part of the Parasitology Research Monographs book series (Parasitology Res. Monogr., volume 12)

Abstract

Big river projects have been important in achieving sustainable development in Brazil. However, these projects often have considerable impacts on human and social development, with negative effects on biodiversity and environmental preservation, leading to the emergence and re-emergence of tropical diseases.

Keywords

Communicable diseases Schistosomiasis Malaria Yellow fever Dengue Zika Chikungunya West Nile virus Filariasis 

References

  1. Agência Nacional de Águas – ANA (2017) Água na indústria: uso e coeficientes técnicos. http://www.snirh.gov.br/portal/snirh/snirh-1/acesso-tematico/usos-da-agua/aguanaindustria_usoecoeficientestecnicos.pdf. Accessed 12 Feb 2019
  2. Agência Nacional de Energia Elétrica – ANEEL (2019) Dados do Banco de Informações de Geração (BIG). http://www2.aneel.gov.br/aplicacoes/capacidadebrasil/capacidadebrasil.cfm. Accessed 06 Mar 2019
  3. Agrawal SK (2017) Impact of climatic variation on parasitic infections - short review. Int J Res Stud Microbiol Biotechnol 3(3):17–21.  https://doi.org/10.20431/2454-9428.0303005 CrossRefGoogle Scholar
  4. Angelo JR, Katsuragawa TH, Sabroza PC et al (2017) The role of spatial mobility in malaria transmission in the Brazilian Amazon: the case of Porto Velho municipality, Rondônia, Brazil (2010–2012). PLoS One 12(2):e0172330.  https://doi.org/10.1371/journal.pone.0172330 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Arrifano GPF, Martín-Doimeadios RCR, Jiménez-Moreno M et al (2018) Large-scale projects in the amazon and human exposure to mercury: the case-study of the Tucuruí Dam. Ecotoxicol Environ Saf 147:299–305.  https://doi.org/10.1016/j.ecoenv.2017.08.048 CrossRefPubMedGoogle Scholar
  6. Bacci DC, Pataca EM (2008) Education for water. EAV 22(63):211–226. http://www.revistas.usp.br/eav/article/view/10302/11958. Accessed 18 Jan 2019
  7. Barakat RM (2013) Epidemiology of schistosomiasis in Egypt: travel through time: review. J Adv Res 4(5):425–432.  https://doi.org/10.1016/j.jare.2012.07.003 CrossRefGoogle Scholar
  8. Barcellos C, Monteiro AMV, Corvalán C et al (2009) Climatic and environmental changes and their effect on infectious diseases: scenarios and uncertainties for Brazil. Epidemiol Serv Saúde 18(3):285–304.  https://doi.org/10.5123/S1679-49742009000300011 CrossRefGoogle Scholar
  9. Becker BK (2012) Reflections on hydroelectric dams in the Amazon: water, energy and development. Bol Mus Para Emílio Goeldi Ciênc Hum 7(3):783–790.  https://doi.org/10.1590/S1981-81222012000300011 CrossRefGoogle Scholar
  10. Bezerra FSM, Pinheiro MCC, Silva Filho JDD et al (2018) Identification of Biomphalaria sp. and other freshwater snails in the large-scale water transposition project in the Northeast of Brazil. Rev Inst Med Trop Sao Paulo 60:e41.  https://doi.org/10.1590/s1678-9946201860041 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Bhatia R (2011) Health impact assessment: a guide for practice. Human Impact Partners, Oakland, CA. https://humanimpact.org/wp-content/uploads/2011/01/HIA-Guide-for-Practice.pdf. Accessed 8 Feb 2019
  12. Brasil. Ministério da Integração Nacional (2004) Projeto de Integração do Rio São Francisco com Bacias Hidrográficas do Nordeste Setentrional – Relatório de Impacto Ambiental (RIMA). Brasília: MIN. http://www.mi.gov.br/documents/10157/3678963/Rima+-+Relat%C3%B3rio+de+Impacto+Ambiental.pdf/4324863d-cbff-4522-9bd0-eab9d34b8fe2. Accessed 8 Feb 2019
  13. Brasil. Ministério da Integração Nacional (2014) Projeto de Integração do Rio São Francisco. Brasília: MIN. Assessoria de Comunicação Social. http://www.mi.gov.br/c/document_library/get_file?uuid=261be082-5ac5-43b7-8e8b-59bb61b1b108&groupId=2054191. Accessed 8 Jan 2019
  14. Brasil. Ministério da Integração Nacional (2019) Projeto de Integração do Rio São Francisco: entenda os detalhes. http://www.integracao.gov.br/web/projeto-sao-francisco/o-andamento-das-obras. Accessed 8 Jan 2019
  15. Brasil. Ministério da Saúde. Secretaria de Vigilância em Saúde. Departamento de Vigilância de Doenças e Agravos não Transmissíveis e Promoção da Saúde (2018) Health Brazil 2017: an analysis of the health situation and challenges to the achievement of the sustainable development goals. Brasília: Ministério da Saúde. http://bvsms.saude.gov.br/bvs/publicacoes/saude_brasil_2017_analise_situacao_saude_desafios_objetivos_desenvolvimento_sustetantavel.pdf. Accessed 15 Feb 2019
  16. Brasil. Ministério da Saúde. Secretaria de Vigilância em Saúde. Departamento de Vigilância em Saúde Ambiental e Saúde do Trabalhador (2014) Avaliação de Impacto à Saúde – AIS: metodologia adaptada para aplicação no Brasil. Brasília: Ministério da Saúde. http://bvsms.saude.gov.br/bvs/publicacoes/avaliacao_impacto_saude_ais_metodologia.pdf. Accessed 8 Feb 2019
  17. Brasil. Ministério da Saúde. Secretaria de Vigilância em Saúde. Departamento de Vigilância Epidemiológica (2014) Vigilância da Esquistossomose Mansoni: diretrizes técnicas – 4. ed. Brasília: Ministério da Saúde. http://bvsms.saude.gov.br/bvs/publicacoes/vigilancia_esquistossome_mansoni_diretrizes_tecnicas.pdf. Accessed 15 Feb 2019
  18. Brasil. Ministério das Cidades. Secretaria Nacional de Saneamento Ambiental - SNSA (2016) Sistema Nacional de Informações sobre Saneamento: Diagnóstico dos Serviços de Água e Esgotos – 2014. Brasília: SNSA/MCIDADES. http://www.epsjv.fiocruz.br/upload/Diagnostico_AE2014.pdf. Accessed 8 Jan 2019
  19. Cable J, Barber I, Boag B et al (2017) Global change, parasite transmission and disease control: lessons from ecology. Philos Trans R Soc Lond B Biol Sci 372(1719):20160088.  https://doi.org/10.1098/rstb.2016.0088 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Camasmie Abe K, Miraglia SGEK (2018) Dengue incidence and associated costs in the periods before (2000–2008) and after (2009–2013) the construction of the hydroelectric power plants in Rondônia, Brazil. Epidemiol Serv Saude 27(2):e2017232.  https://doi.org/10.5123/S1679-49742018000200012 CrossRefPubMedGoogle Scholar
  21. Chivian E, Bernstein A (2008) Sustaining life: how human health depends on biodiversity. Oxford University Press, New YorkGoogle Scholar
  22. Comissão Nacional de Meio Ambiente - CONAMA (1986) Resolução No 1, de 23 de janeiro de 1986. Dispõe sobre critérios básicos e diretrizes gerais para a avaliação de impacto ambiental. http://www.siam.mg.gov.br/sla/download.pdf?idNorma=8902. Accessed 8 Jan 2019
  23. Comissão Nacional de Meio Ambiente - CONAMA (1997) Resolução No 237, de 19 de dezembro de 1997. Dispõe sobre licenciamento ambiental; competência da União, Estados e Municípios; listagem de atividades sujeitas ao licenciamento; Estudos Ambientais, Estudo de Impacto Ambiental e Relatório de Impacto Ambiental. http://extwprlegs1.fao.org/docs/pdf/bra25095.pdf. Accessed 8 Jan 2019
  24. Confalonieri UE, Margonari C, Quintão AF (2014) Environmental change and the dynamics of parasitic diseases in the Amazon. Acta Trop 129:33–41.  https://doi.org/10.1016/j.actatropica.2013.09.013 CrossRefPubMedGoogle Scholar
  25. Costa AP, Nunes PH, Leite BHS et al (2016) Diversity of bats trypanosomes in hydroeletric area of Belo Monte in Brazilian Amazonia. Acta Trop 164:185–193.  https://doi.org/10.1016/j.actatropica.2016.08.033 CrossRefPubMedGoogle Scholar
  26. Coutinho AD, Silva ML, Gonçalves JF (1992) Epidemiological study on mansoni schistosomiasis in irrigation areas of Northeastern Brazil. Cad Saúde Pública 8(3):302–310.  https://doi.org/10.1590/S0102-311X1992000300009 CrossRefGoogle Scholar
  27. Favre TC, Fernandez MA, Beck LC et al (2016) Assessment of schistosomiasis in the semi-arid Northeast region of Brazil: the São Francisco River large-scale water transposition project. Rev Soc Bras Med Trop 49(2):252–257.  https://doi.org/10.1590/0037-8682-0243-2015 CrossRefPubMedGoogle Scholar
  28. Fearnside PM (2006) Dams in the Amazon: Belo Monte and Brazil’s hydroelectric development of the Xingu River Basin. Environ Manag 38(1):16–27.  https://doi.org/10.1007/s00267-005-0113-6 CrossRefGoogle Scholar
  29. Fearnside PM (2015) Amazon dams and waterways: Brazil’s Tapajós Basin plans. Ambio 44(5):426–439.  https://doi.org/10.1007/s13280-015-0642-z CrossRefPubMedPubMedCentralGoogle Scholar
  30. Fernandez MA, Mattos AC, Silva EF et al (2014) A malacological survey in the Manso Power Plant, State of Mato Grosso, Brazil: new records of freshwater snails, including transmitters of schistosomiasis and exotic species. Rev Soc Bras Med Trop 47(4):498–506.  https://doi.org/10.1590/0037-8682-0138-2014 CrossRefPubMedGoogle Scholar
  31. Fiorillo CAP (2018) Curso de Direito Ambiental Brasileiro, 18th edn. Editora Saraiva, São PauloGoogle Scholar
  32. Fleury LC, Almeida J (2013) The construction of the Belo Monte hydroelectric power plant: environmental conflict and the development dilemma. Ambient Soc 16(4):141–156.  https://doi.org/10.1590/S1414-753X2013000400009 CrossRefGoogle Scholar
  33. Franco VS, Souza EB, Lima AMM (2018) Floods and social vulnerability: study on the Xingu river in Altamira/PA. Ambient Soc 21:e01573.  https://doi.org/10.1590/1809-4422asoc0157r3vu18l1ao CrossRefGoogle Scholar
  34. Furtado NV, Galardo AK, Galardo CD et al (2016) Phlebotomines (Diptera: Psychodidae) in a hydroelectric system affected area from Northern Amazoni-an Brazil: further insights into the effects of environmental changes on vector ecology. J Trop Med 2016:9819723CrossRefGoogle Scholar
  35. Galardo AKR, Galardo CD, Silveira GA et al (2015) Phlebotominae sand flies (Diptera: Psychodidae): potential vectors of American cutaneous leishmaniasis agents in the area associated with the Santo Antônio Hydroelectric System in Western Amazonian Brazil. Rev Soc Bras Med Trop 48(3):265–271.  https://doi.org/10.1590/0037-8682-0088-2015 CrossRefPubMedGoogle Scholar
  36. Gergel SE, Turner MG (2017) Learning landscape ecology, 2nd edn. Springer-Verlag, New York. eBook ISBN 978-1-4939-6374-4CrossRefGoogle Scholar
  37. Giongo CR, Mendes JMR, Santos FK (2015) Development, health and environment: contradictions in the construction of dams. Serv Soc Soc 123:501–522.  https://doi.org/10.1590/0101-6628.034 CrossRefGoogle Scholar
  38. Granziera MLM (2011) Direito ambiental, 2nd edn. Editora Atlas, São PauloGoogle Scholar
  39. Grisotti M (2016) The construction of health causal relations in the Belo Monte dam context. Ambient Soc 19(2):287–304.  https://doi.org/10.1590/1809-4422ASOC0252V1922016 CrossRefGoogle Scholar
  40. Guergel DR (2013) Water resources development: engineering the future of global health. Boston University Frederick S. Pardee Center for the Study of the Longer-Range Future. https://open.bu.edu/handle/2144/22735. Accessed 10 Feb 2019
  41. Gyasi SF, Boamah B, Awuah E et al (2018) A perspective analysis of dams and water quality: the Bui Power Project on the Black Volta, Ghana. J Environ Public Health 2018:6471525.  https://doi.org/10.1155/2018/6471525 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Heinrich K, Bach M, Breuer L (2017) Infectious disease research—what role is there for hydrologists? JWARP 9(2):139–162.  https://doi.org/10.4236/jwarp.2017.92011 CrossRefGoogle Scholar
  43. Instituto Social Ambiental – ISA (2007) Abastecimento de água e esgotamento sanitário nas capitais brasileiras, em 2004. ISA, São Paulo. http://www.socioambiental.org/banco_imagens/pdfs/AbastEsgotBrasilNov07.pdf. Accessed 2 Feb 2019
  44. International Commission on Large Dams (2018) World register of dam - general synthesis. ICOLD, Paris. https://www.icold-cigb.org/GB/world_register/general_synthesis.asp. Accessed 2 Feb 2019
  45. Kibret S (2018) Time to revisit how dams are affecting malaria transmission. Lancet Planet Health 2(9):e378–e379.  https://doi.org/10.1016/S2542-5196(18)30184-0 CrossRefPubMedGoogle Scholar
  46. Kibret S, Lautze J, McCartney M et al (2015) Malaria impact of large dams in sub-Saharan Africa: maps, estimates and predictions. Malar J 14:339.  https://doi.org/10.1186/s12936-015-0873-2 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Kibret S, Lautze J, McCartney M et al (2016) Malaria and large dams in sub-Saharan Africa: future impacts in a changing climate. Malar J 15:448.  https://doi.org/10.1186/s12936-016-1498-9 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Leme FBM (2007) As represas como lugares turísticos: Novas significações e valorizações de uma paisagem sem memória. Cultur: Revista de Cultura e Turismo 1(1):1–21. http://200.128.65.36/revistas/culturaeturismo/edicao1/artigo6.pdf. Accessed 2 Feb 2019
  49. Lereer LB, Scudder T (1999) Health impact of large dams. Environ Impact Assess Rev 19(2):113–123.  https://doi.org/10.1016/S0195-9255(98)00041-9 CrossRefGoogle Scholar
  50. Leturcq G (2016) Differences and similarities in impacts of hydroelectric dams between north and south of Brazil. Ambient Soc 19(2):265–286.  https://doi.org/10.1590/1809-4422ASOC0254R1V1922016 CrossRefGoogle Scholar
  51. Lima SFS, Batista GT (2010) Impact of the reservoir of Paraibuna Hydroelectric Power Plant, SP, Brazil. Ambiente & Água - Interdiscip J Appl Sci 5(3):208–221CrossRefGoogle Scholar
  52. Martins-Melo FR, Pinheiro MC, Ramos AN Jr et al (2014) Trends in schistosomiasis-related mortality in Brazil, 2000–2011. Int J Parasitol 44(14):1055–1062.  https://doi.org/10.1016/j.ijpara.2014.07.009 CrossRefPubMedGoogle Scholar
  53. Martins-Melo FR, Pinheiro MC, Ramos AN Jr et al (2015) Spatiotemporal patterns of schistosomiasis-related deaths, Brazil, 2000–2011. Emerg Infect Dis 21(10):1820–1823.  https://doi.org/10.3201/eid2110.141438 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Martins-Melo FR, Carneiro M, Ramos AN Jr et al (2018) The burden of Neglected Tropical Diseases in Brazil, 1990–2016: a subnational analysis from the Global Burden of Disease Study 2016. PLoS Negl Trop Dis 12(6):e0006559.  https://doi.org/10.1371/journal.pntd.0006559 CrossRefPubMedPubMedCentralGoogle Scholar
  55. McManus DP, Gray DJ, Li Y et al (2010) Schistosomiasis in the People’s Republic of China: the era of the Three Gorges Dam. Clin Microbiol Rev 23(2):442–466.  https://doi.org/10.1128/CMR.00044-09 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Movimento dos Atingidos por Barragens - MAB (2019) Movimento dos Atingidos por Barragens (MAB) no Brasil - Água e energia não são mercadorias! http://www.mabnacional.org.br/. Accessed 18 Jan 2019
  57. N’Goran EK, Diabate S, Utzinger J et al (1997) Changes in human schistosomiasis levels after the construction of two large hydroelectric dams in central Côte d’Ivoire. Bull World Health Organ 75(6):541–545PubMedPubMedCentralGoogle Scholar
  58. Nava A, Shimabukuro JS, Chmura AA et al (2017) The impact of global environmental changes on infectious disease emergence with a focus on risks for Brazil. ILAR J 58(3):393–400.  https://doi.org/10.1093/ilar/ilx034 CrossRefPubMedGoogle Scholar
  59. Oliveira FAS, Heukelbach J, Gomide M, Moura RCS (2006) Impact of large dams on public health: I. Upstream effects. Cad Saúde Colet 14(4):575–596Google Scholar
  60. Oliveira FAS, Heukelbach J, Gomide M et al (2007) Impact of large dams on Public Health: II. Dowstream effects. Cad Saúde Colet 15(1):9–26Google Scholar
  61. Patz JA, Daszak P, Tabor GM et al (2004) Unhealthy landscapes: policy recommendations on land use change and infectious disease emergence. Environ Health Perspect 112(10):1092–1098.  https://doi.org/10.1289/ehp.6877 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Pinto LF (2012) De Tucuruí a Belo Monte: a história avança mesmo? Bol Mus Para Emílio Goeldi. Ciênc Hum 7(3):777–782.  https://doi.org/10.1590/S1981-81222012000300010 CrossRefGoogle Scholar
  63. Poma A (2018) The emotional dimension of resistance movements against dams. Ambient Soc 21:e02070.  https://doi.org/10.1590/1809-4422asoc0207vu18l3ao CrossRefGoogle Scholar
  64. Quigley R, Den Broeder L, Furu, P et al. (2006) Health impact assessment international best practice principles. Special Publication Series No. 5. International Association for Impact Assessment, Fargo. https://activelivingresearch.org/sites/activelivingresearch.org/files/IAIA_HIABestPractice_0.pdf. Accessed 12 Feb 2019
  65. Randell H (2016a) The short-term impacts of development-induced displacement on wealth and subjective well-being in the Brazilian Amazon. World Dev 87:385–400.  https://doi.org/10.1016/j.worlddev.2016.07.005 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Randell H (2016b) Structure and agency in development-induced forced migration: the case of Brazil’s Belo Monte Dam. Popul Environ 37(3):265–287.  https://doi.org/10.1007/s11111-015-0245-4 CrossRefPubMedGoogle Scholar
  67. Rezende HR, Sessa PA, Ferreira AL et al (2009) Effects of the installation of the Rosal hydroelectric powers station, Itabapoana River, States of Espírito Santo and Rio de Janeiro, on anophelinae, planorbidae and phlebotominae. Rev Soc Bras Med Trop 42(2):160–164.  https://doi.org/10.1590/S0037-86822009000200013 CrossRefPubMedGoogle Scholar
  68. Rodrigures MS, Batista EP, Silva AA et al (2017) Change in Anopheles richness and composition in response to artificial flooding during the creation of the Jirau hydroelectric dam in Porto Velho, Brazil. Malar J 16(1):87.  https://doi.org/10.1186/s12936-017-1738-7 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Sanchez-Ribas J, Parra-Henao G, Guimarães AÉ (2012) Impact of dams and irrigation schemes in Anopheline (Diptera: Culicidae) bionomics and malaria epidemiology. Rev Inst Med Trop S Paulo 54(4):179–191.  https://doi.org/10.1590/S0036-46652012000400001 CrossRefPubMedGoogle Scholar
  70. Santos TV, Silva FMM, Barata IR et al (2014) A new species of phlebotomine, Trichophoromyia adelsonsouzai (Diptera: Psychodidae) of Brazilian Amazonia. Mem Inst Oswaldo Cruz 109(2):140–147.  https://doi.org/10.1590/0074-0276130159 CrossRefPubMedGoogle Scholar
  71. Silva Filho JD, MCC P, Sousa MS et al (2017) Detection of schistosomiasis in an area directly affected by the São Francisco River large-scale water transposition project in the Northeast of Brazil. Rev Soc Bras Med Trop 50(5):658–665.  https://doi.org/10.1590/0037-8682-0299-2017 CrossRefGoogle Scholar
  72. Sleigh AC, Jackson S (2001) Dams, development, and health: a missed opportunity. Lancet 357(9256):570–571.  https://doi.org/10.1016/S0140-6736(00)04072-1 CrossRefPubMedGoogle Scholar
  73. Sokolow SH, Jones IJ, Jocque M et al (2017) Nearly 400 million people are at higher risk of schistosomiasis because dams block the migration of snail-eating river prawns. Philos Trans R Soc Lond Ser B Biol Sci 372(1722):20160127.  https://doi.org/10.1098/rstb.2016.0127 CrossRefGoogle Scholar
  74. Solidariedade e Educação - FASE, Laboratório, Estado, Trabalho, Território e Natureza - ETTERN, Instituto de Pesquisa e Planejamento Urbano e Regional - IPPUR (2011) Relatório síntese: Projeto de avaliação de equidade ambiental como instrumento de democratização dos procedimentos de avaliação de impacto de projetos de desenvolvimento. FASE/ETTERN/IPPUR, Rio de Janeiro. https://fase.org.br/wp-content/uploads/2011/07/Relat%C3%B3rio+-+S%C3%ADntese+-+Projeto+Avaliacao+Equidade+Ambiental+final.final_.pdf. Accessed 21 Jan 2019
  75. Souza NCR, Fontes AS, Luz LD et al (2017) Identification of the degree of impact of dams on the hydrologic regime of semi-arid rivers: an evaluation of the DHRAM method. RBRH 22:e13.  https://doi.org/10.1590/2318-0331.011716093 CrossRefGoogle Scholar
  76. Steinmann P, Keiser J, Bos R et al (2006) Schistosomiasis and water resources development: systematic review, meta-analysis, and estimates of people at risk. Lancet Infect Dis 6(7):411–425CrossRefGoogle Scholar
  77. The United Nations World Water Assessment Programme - WWAP, UN-Water (2018) The United Nations world water development report 2018: Nature-Based Solutions for Water. Paris, UNESCO. http://www.unwater.org/publications/world-water-development-report-2018/. Accessed 21 Jan 2019
  78. The World Bank (2014) Database world development indicators - electricity production from renewable sources, excluding hydroelectric (kWh). https://data.worldbank.org/indicator/EG.ELC.RNWX.KH. Accessed 21 Jan 2019
  79. Traoré M (1989) Schistosomiasis in the Sélingué dam area: the integrated approach. Trop Med Parasitol 40(2):228–231PubMedGoogle Scholar
  80. Tubaki RM, Menezes RM, Cardoso RP Jr et al (2004) Studies on entomological monitoring: mosquito species frequency in riverine habitats of the Igarapava Dam, Southern Region, Brazil. Rev Inst Med Trop Sao Paulo 46(4):223–229.  https://doi.org/10.1590/S0036-46652004000400009 CrossRefPubMedGoogle Scholar
  81. Tundisi JG (2008) Water resources in the future: problems and solutions. Estud Av 22(63):7–16.  https://doi.org/10.1590/S0103-40142008000200002 CrossRefGoogle Scholar
  82. Wallet F, Sicard D, Brey P et al (2016) Health impact of dams: lessons from a case study. Environ Risque Sante 15(5):419–425.  https://doi.org/10.1684/ers.2016.0897 CrossRefGoogle Scholar
  83. World Health Organization - WHO (2000) Sustainable development and healthy environments. Human health and dams: the World Health Organization’s submission to the World Commission on Dams (WCD). WHO, Geneva. https://www.who.int/docstore/water_sanitation_health/Documents/Dams/Damsfinal.htm. Accessed 15 Feb 2019
  84. World Health Organization - WHO (2018) Schistosomiasis - key facts, 20 February 2018. https://www.who.int/news-room/fact-sheets/detail/schistosomiasis. Accessed 21 Feb 2019
  85. Yamana T (2004) The impacts of dams and reservoirs on public health. Report no. 1096. http://web.mit.edu/eltahir/www2/Makana/papers/research_healthimpacts.doc. Accessed 15 Feb 2019
  86. Zarfl C, Lumsdon AE, Berlekamp J et al (2015) A global boom in hydropower dam construction. Aquat Sci 77(1):161–170.  https://doi.org/10.1007/s00027-014-0377-0 CrossRefGoogle Scholar
  87. Zheng J et al (2002) Relationships between the transmission of schistosomiasis japonica and the construction of the Three Gorge Reservoir. Acta Trop 82(2):147–156.  https://doi.org/10.1016/S0001-706X(02)00046-3 CrossRefGoogle Scholar
  88. Zhouri A, Oliveira R (2007) Development, social conflicts and violence in rural Brazil: the case of hydroelectric dams. Ambient Soc 10(2):119–135.  https://doi.org/10.1590/S1414-753X2007000200008 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Alberto Novaes Ramos Jr
    • 1
  • Marta Cristhiany Cunha Pinheiro
    • 1
  • Sharmênia Araújo Soares Nuto
    • 2
    • 3
  • Edenilo Baltazar Barreira Filho
    • 4
  • Jorg Heukelbach
    • 1
  1. 1.School of Medicine, Department of Community HealthFederal University of Ceará (UFC)FortalezaBrazil
  2. 2.Oswaldo Cruz Foundation (FIOCRUZ)EusébioBrazil
  3. 3.University of Fortaleza (UNIFOR)FortalezaBrazil
  4. 4.Faculty of Education and Culture of Ceará (FAECE)Law SchoolFortalezaBrazil

Personalised recommendations