Advertisement

Blind Adaptive Filtering

  • Paulo S. R. DinizEmail author
Chapter

Abstract

There are a number of applications where the reference signal is either not available or consists of a training signal that in communication systems implies in reduction of useful data transmission. In those cases, we should utilize some alternative objective functions applied to the available data as well as some knowledge related to the nature (properties) of the signals involved.

References

  1. 1.
    Z. Ding, Y. Li, Blind Equalization and Identification (Marcel Dekker, New York, 2001)CrossRefGoogle Scholar
  2. 2.
    S. Haykin (ed.), Unsupervised Adaptive Filtering, Vol. I: Blind Source Separation (Wiley, New York, 2000)Google Scholar
  3. 3.
    J.M.T. Romano, R.R.F. Attux, C.C. Cavalcante, R. Suyama, Unsupervised Signal Processing: Channel Equalization and Source Separation (CRC, Boca Raton, 2011)Google Scholar
  4. 4.
    S. Haykin (ed.), Unsupervised Adaptive Filtering, Vol. II: Blind Deconvolution (Wiley, New York, 2000)Google Scholar
  5. 5.
    C.-Y. Chi, C.-C. Feng, C.-H. Chen, C.-Y. Chen, Blind Equalization and System Identification (Springer, London, 2006)Google Scholar
  6. 6.
    J.R. Barry, E.A. Lee, D.G. Messerschmitt, Digital Communication, 3rd edn. (Kluwer Academic, Boston, 2004)CrossRefGoogle Scholar
  7. 7.
    C.L. Nikias, A.P. Petropulu, Higher-Order Spectra Analysis: A Nonlinear Signal Processing Framework (Prentice Hall, Englewood Cliffs, 1993)zbMATHGoogle Scholar
  8. 8.
    Y. Sato, A method of self-recovering equalization for multi-level amplitude modulation. IEEE Trans. Commun. (COM) 23, 679–682 (1975)CrossRefGoogle Scholar
  9. 9.
    A. Benveniste, M. Gousat, R. Ruget, Robust identification nonminimum phase system: Blind adjustment of a linear equalizer in data communications. IEEE Trans. Automat. Control (AC) 25, 385–399 (1980)Google Scholar
  10. 10.
    D.N. Godard, Self-recovering equalization and carrier tracking in two-dimensional data communication system. IEEE Trans. Commun. (COM) 28, 1867–1875 (1980)CrossRefGoogle Scholar
  11. 11.
    C.B. Papadias, D.T.M. Slock, Normalized sliding window constant-modulus and decision-directed algorithms: a link between blind equalization and classical adaptive filtering. IEEE Trans. Signal Process. 45, 231–235 (1997)CrossRefGoogle Scholar
  12. 12.
    E. Moulines, P. Duhamel, J.-F. Cardoso, S. Mayarargue, Subspace methods for the blind identification of multichannel FIR filters. IEEE Trans. Signal Process. 43, 516–525 (1995)CrossRefGoogle Scholar
  13. 13.
    D. Gesbert, P. Duhamel, Unbiased blind adaptive channel identification. IEEE Trans. Signal Process. 48, 148–158 (2000)CrossRefGoogle Scholar
  14. 14.
    X. Li, H. Fan, Direct estimation of blind zero-forcing equalizers based on second-order statistics. IEEE Trans. Signal Process. 48, 2211–2218 (2000)CrossRefGoogle Scholar
  15. 15.
    L. Tong, Q. Zhao, Jointly order detection and blind channel estimation by least squares smoothing. IEEE Trans. Signal Process. 47, 2345–2355 (1999)CrossRefGoogle Scholar
  16. 16.
    A.P. Liavas, P.A. Regalia, J.-P. Delmas, Blind channel approximation: Effective channel order determination. IEEE Trans. Signal Process. 47, 3336–3344 (1999)CrossRefGoogle Scholar
  17. 17.
    A.J. Viterbi, Principles of Spread Spectrum Communication (Addison Wesley, Reading, 1995)Google Scholar
  18. 18.
    M. Honig, M.K. Tsatsanis, Adaptive techniques for multiuser CDMA receivers. IEEE Signal Process. Mag. 17, 49–61 (2000)CrossRefGoogle Scholar
  19. 19.
    S. Verdu, Multiuser Detection (Cambridge University Press, Cambridge, 1998)zbMATHGoogle Scholar
  20. 20.
    M.L. Honig, U. Madhow, S. Verdú, Blind adaptive multiuser detection. IEEE Trans. Inf. Theor. 41, 944–960 (1995)CrossRefGoogle Scholar
  21. 21.
    M.K. Tsatsanis, Inverse filtering criteria for CDMA systems. IEEE Trans. Signal Process. 45, 102–112 (1997)CrossRefGoogle Scholar
  22. 22.
    Z. Xu, M.K. Tsatsanis, Blind adaptive algorithms for minimum variance CDMA receivers. IEEE Trans. Signal Process. 49, 180–194 (2001)zbMATHGoogle Scholar
  23. 23.
    Z. Xu, P. Liu, X. Wang, Blind multiuser detection: From MOE to subspace methods. IEEE Trans. Signal Process. 52, 510–524 (2004)MathSciNetCrossRefGoogle Scholar
  24. 24.
    X. Wang, H.V. Poor, Wireless Communication Systems: Advanced Techniques for Signal Reception (Prentice Hall, Upper Saddle River, 2003)Google Scholar
  25. 25.
    E. de Carvalho, D.T.M. Slock, Blind and semi-blind FIR multichannel estimation: (Global) Identifiability conditions. IEEE Trans. Signal Process. 52, 1053–1064 (2004)MathSciNetCrossRefGoogle Scholar
  26. 26.
    A. Paulraj, R. Nabar, D. Gore, Introduction to Space-Time Wireless Communications (Cambridge University Press, Cambridge, 2003)Google Scholar
  27. 27.
    E.G. Larsson, P. Stoica, Space-Time Block Coding for Wireless Communications (Cambridge University Press, Cambridge, 2003)CrossRefGoogle Scholar
  28. 28.
    A. Hottinen, O. Tirkkonen, R. Wichman, Multi-Antenna Transceiver Techniques for 3G and Beyond (Wiley, New York, 2003)CrossRefGoogle Scholar
  29. 29.
    H.L. Van Trees, Optimum Array Processing: Detection, Estimation, and Modulation Theory, Part IV (Wiley Interscience, New York, 2002)CrossRefGoogle Scholar
  30. 30.
    L. Tong, Z. Ding, Single-user channel estimation and equalization. IEEE Signal Process. Mag. 17, 17–28 (2000)Google Scholar
  31. 31.
    L. Tong, G. Xu, T. Kailath, Blind identification and equalization based on second-order statistics: a time domain approach. IEEE Trans. Inf. Theor. 40, 340–349 (1994)CrossRefGoogle Scholar
  32. 32.
    L. Tong, G. Xu, B. Hassibi, T. Kailath, Blind identification and equalization based on second-order statistics: a frequency-domain approach. IEEE Trans. Inf. Theor. 41, 329–334 (1994)CrossRefGoogle Scholar
  33. 33.
    E. Serpedin, G.B. Giannakis, A simple proof of a known blind channel identifiability result. IEEE Trans. Signal Process. 47, 591–593 (1999)CrossRefGoogle Scholar
  34. 34.
    Y. Li, Z. Ding, Global convergence of fractionally spaced Godard (CMA) adaptive equalizers. IEEE Trans. Signal Process. 44, 818–826 (1996)CrossRefGoogle Scholar
  35. 35.
    R.C. de Lamare, P.S.R. Diniz, Blind constrained set-membership algorithms with time-varying bounds for CDMA interference suppression, in Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, Toulouse, France, May 2006, pp. IV-617–IV-620Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Universidade Federal do Rio de JaneiroNiteróiBrazil

Personalised recommendations