Advertisement

Nonlinear Adaptive Filtering

  • Paulo S. R. DinizEmail author
Chapter

Abstract

The classic adaptive filtering algorithms, such as those discussed in the remaining chapters of this book, consist of adapting the coefficients of linear filters in real time. These algorithms have applications in a number of situations where the signals measured in the environment can be well modeled as Gaussian noises applied to linear systems, and their combinations are of additive type. In digital communication systems, most of the classical approaches model the major impairment affecting the transmission with a linear model. For example, channel noise is considered additive Gaussian noise, intersymbol and co-channel interferences are also considered of additive type, and channel models are assumed to be linear frequency-selective filters.

References

  1. 1.
    T. Ogunfunmi, Adaptive Nonlinear System Identification: The Volterra and Wiener Model Approaches (Springer, New York, 2007)CrossRefGoogle Scholar
  2. 2.
    D.P. Manic, V.S.L. Goh, Complex Valued Nonlinear Adaptive Filters (Wiley, Chichester, 2009)CrossRefGoogle Scholar
  3. 3.
    W. Liu, J.C. Príncipe, S. Haykin, Kernel Adaptive Filtering: A Comprehensive Introduction (Wiley, Hoboken, 2010)CrossRefGoogle Scholar
  4. 4.
    V.J. Mathews, Adaptive polynomial filters. IEEE Signal Process. Mag. 8, 10–26 (1991)CrossRefGoogle Scholar
  5. 5.
    V.J. Mathews, G.L. Sicuranza, Polynomial Signal Processing (Wiley, New York, 2000)Google Scholar
  6. 6.
    J. Lee, V.J. Mathews, A fast recursive least squares adaptive second-order Volterra filter and its performance analysis. IEEE Trans. Signal Process. 41, 1087–1101 (1993)CrossRefGoogle Scholar
  7. 7.
    M.A. Syed, V.J. Mathews, Lattice algorithms for recursive least squares adaptive second-order Volterra filtering. IEEE Trans. Circuits Syst. II: Analog Digit. Signal Process. 41, 202–214 (1994)CrossRefGoogle Scholar
  8. 8.
    M.A. Syed, V.J. Mathews, QR-decomposition based algorithms for adaptive Volterra filtering. IEEE Trans. Circuits Syst. II: Analog Digit. Signal Process. 40, 372–382 (1993)CrossRefGoogle Scholar
  9. 9.
    V.J. Mathews, Adaptive Volterra filters using orthogonal structures. IEEE Signal Process. Lett. 3, 307–309 (1996)CrossRefGoogle Scholar
  10. 10.
    K.K. Johnson, I.W. Sandberg, Notes on the stability of bilinear filters. IEEE Trans. Signal Process. 46, 2056–2058 (1998)CrossRefGoogle Scholar
  11. 11.
    J. Lee, V.J. Mathews, A stability result for RLS adaptive bilinear filters. IEEE Signal Process. Lett. 1, 191–193 (1994)CrossRefGoogle Scholar
  12. 12.
    B. Widrow, E. Walach, Adaptive Inverse Control (Prentice Hall, Englewood Cliffs, 1996)Google Scholar
  13. 13.
    F.-L. Luo, R. Unbehauen, Applied Neural Networks for Signal Processing (Cambridge University Press, Cambridge, 1996)Google Scholar
  14. 14.
    S. Haykin, Neural Networks and Learning Machines, 3rd edn. (Prentice Hall, Englewood Cliffs, 2009)Google Scholar
  15. 15.
    D. Gonzaga, M.L.R. de Campos, S.L. Netto, Composite squared-error algorithm for training feedforward neural networks, in Proceedings of the 1998 IEEE Digital Filtering and Signal Processing Conference, Victoria, BC (1998)Google Scholar
  16. 16.
    I. Goodfellow, Y. Bengio, A. Courville, Deep Learning (MIT Press, Cambridge, 2016)Google Scholar
  17. 17.
    K.P. Murphy, Machine Learning: A Probabilistic Perspective (MIT Press, Cambridge, 2012)Google Scholar
  18. 18.
    S. Theodoridis, Machine Learning: A Bayesian and Optimization Perspective (Academic, Oxford, 2015)Google Scholar
  19. 19.
    B. Widrow, S.D. Stearns, Adaptive Signal Processing (Prentice Hall, Englewood Cliffs, 1985)zbMATHGoogle Scholar
  20. 20.
    S.U. Qureshi, Adaptive equalization. Proc. IEEE 73, 1349–1387 (1985)CrossRefGoogle Scholar
  21. 21.
    A. Papoulis, Probability, Random Variables, and Stochastic Processes, 3rd edn. (McGraw Hill, New York, 1991)zbMATHGoogle Scholar
  22. 22.
    B. Mulgrew, Applying radial basis functions. IEEE Signal Process. Mag. 13, 50–65 (1996)CrossRefGoogle Scholar
  23. 23.
    S. Chen, B. Mulgrew, S. McLaughlin, Adaptive Bayesian equalizer with decision feedback. IEEE Trans. Signal Process. 41, 2918–2926 (1993)CrossRefGoogle Scholar
  24. 24.
    S. Chen, S. McLaughlin, B. Mulgrew, P.M. Grant, Adaptive Bayesian decision feedback equalizer for dispersive mobile radio channels. IEEE Trans. Commun. 43, 1937–1946 (1995)CrossRefGoogle Scholar
  25. 25.
    S. Chen, B. Mulgrew, P.M. Grant, A clustering technique for digital communication channel equalization using radial basis function networks. IEEE Trans. Neural Netw. 4, 570–579 (1993)CrossRefGoogle Scholar
  26. 26.
    S. Chen, B. Mulgrew, Reconstruction of binary signals using an adaptive-radial-basis function equaliser. Signal Process. 22, 77–93 (1991)CrossRefGoogle Scholar
  27. 27.
    S. Chen, B. Mulgrew, Overcoming co-channel interference using an adaptive radial basis function equaliser. Signal Process. 28, 91–107 (1992)CrossRefGoogle Scholar
  28. 28.
    D. Williamson, R.A. Kennedy, G. Pulford, Block decision feedback equalization. IEEE Trans. Commun. 40, 255–264 (1992)CrossRefGoogle Scholar
  29. 29.
    S. Chen, S. McLaughlin, B. Mulgrew, Complex valued radial basis function network, part I: network architecture and learning algorithms. Signal Process. 35, 19–31 (1994)CrossRefGoogle Scholar
  30. 30.
    S. Chen, S. McLaughlin, B. Mulgrew, Complex valued radial basis function network, part II: application to digital communications channel equalisation. Signal Process. 36, 175–188 (1994)CrossRefGoogle Scholar
  31. 31.
    I. Cha, S. Kassam, Channel equalization using adaptive complex radial basis function networks. IEEE Trans. Sel. Areas Commun. 13, 122–131 (1995)CrossRefGoogle Scholar
  32. 32.
    I. Cha, S. Kassam, Interference cancellation using radial basis function networks. Signal Process. 47, 247–268 (1995)CrossRefGoogle Scholar
  33. 33.
    B. Schölkopf, A.L. Smola, Learning with Kernels: Support Vector Machine, Regularization, Optimization and Beyond (The MIT Press, Cambridge, 2001)Google Scholar
  34. 34.
    W. Liu, P.P. Pokharel, J.C. Príncipe, The kernel least-mean-square algorithm. IEEE Trans. Signal Process. 56, 543–554 (2008)MathSciNetCrossRefGoogle Scholar
  35. 35.
    C. Richard, J.C.M. Bermudez, P. Honeine, Online prediction of time series data with kernels. IEEE Trans. Signal Process. 57, 1058–1067 (2009)MathSciNetCrossRefGoogle Scholar
  36. 36.
    L.-X. Wang, Adaptive Fuzzy Systems and Control: Design and Stability Analysis (Prentice Hall, Englewood Cliffs, 1994)Google Scholar
  37. 37.
    C. Nikias, A.P. Petropulu, Higher-Order Spectra Analysis: A Nonlinear Signal Processing Framework (Prentice Hall, Englewood Cliffs, 1993)zbMATHGoogle Scholar
  38. 38.
    F.-C. Zheng, S. McLaughlin, B. Mulgrew, Blind equalization of nonminimum phase channels: high order cummulant based algorithm. IEEE Trans. Signal Process. 41, 681–691 (1993)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Universidade Federal do Rio de JaneiroNiteróiBrazil

Personalised recommendations