Complex Systems and the Science of Collapse

  • Ugo BardiEmail author


How and why collapses occur according to the science of complex systems. Includes a section on the networked structure of complex systems and a chapter featuring “Amelia the Amoeba,” Ugo Bardi’s unicellular assistant, whose descendants in a Petri dish experience all kinds of collapses.


  1. 1.
    De Shong Meador, B.: Princess, Priestess, Poet. University of Texas Press (2009)Google Scholar
  2. 2.
    Black, J.A., Cunningham, G., Fluckiger-Hawker, E., Robson, E., Zólyomi, G., Inana and Ebih translation.: The Electronic text corpus of sumerian literature. Accessed 3rd Aug 2015
  3. 3.
    Bardi, U., Inanna, H.A., Ebih, R.L.: A report of an ancient ecological catastrophe? (2015). Accessed 17th Apr 2019
  4. 4.
    Prigogine, I.: Symmetry breaking instabilities in dissipative systems. II. J. Chem. Phys. 48, 1695 (1968)CrossRefGoogle Scholar
  5. 5.
    Hall, C.A., Cleveland, C.J., Kaufmann, R.: Energy and Resource Quality: the Ecology of the Economic Process. Wiley Interscience (1986)Google Scholar
  6. 6.
    Odum, H.T.T.: Self-organization, transformity, and information. Science 242(80), 1132–1139 (1988)CrossRefGoogle Scholar
  7. 7.
    Raugei, M.: Net energy analysis must not compare apples and oranges. Nat. Energy 4, 86–88 (2019)CrossRefGoogle Scholar
  8. 8.
    Sgouridis, S., Bardi, U., Csala, D.: The sower’s way. quantifying the narrowing net-energy pathways to a global energy transition (2016). arXiv preprint arXiv:1410.7172
  9. 9.
    Roddier, F.: Thermodynamiqe de l’évolution. Parole (2012)Google Scholar
  10. 10.
    Bardi, U.: The Seneca effect. Why Growth Is Slow but Collapse Is Rapid. Springer Verlag (2017)Google Scholar
  11. 11.
    Montillo, R.: The gruesome, true inspiration behind ‘frankenstein’ | HuffPost. The Huffington Post (2013). Accessed 30th Dec 2018
  12. 12.
    Mills, A.A., Day, S., Parkes, S.: Mechanics of the sandglass. Eur. J. Phys. 17, 97–109 (1996)CrossRefGoogle Scholar
  13. 13.
    Bak, P., Tang, C., Wiesenfeld, K.: Self-organized criticality. Phys. Rev. A 38, 364–374 (1988)CrossRefGoogle Scholar
  14. 14.
    Bak, P.: How nature works. The Science of Self-Organized Criticality, Copernicus (1996)CrossRefGoogle Scholar
  15. 15.
    Pareto, V.: La courbe de la répartition de la richesse. Œuvres complètes, tome III, Genève, 1967 III (1896)Google Scholar
  16. 16.
    Prats, J.: Harry Potter and Pareto’s fat tail. Significance (2011). Accessed 2nd Feb 2019
  17. 17.
    Gutenberg, B., Richter, C.F.: Seismicity of the Earth and Associated Phenomena. Princeton University Press (1954)Google Scholar
  18. 18.
    Gao, J., Barzel, B., Barabási, A.-L.: Universal resilience patterns in complex networks. Nature 530, 307–312 (2016)CrossRefGoogle Scholar
  19. 19.
    Bloomfield, G., Skelton, J., Ivens, A., Tanaka, Y., Kay, R.R.: Sex determination in the social amoeba Dictyostelium discoideum. Science 330, 1533–1536 (2010)CrossRefGoogle Scholar
  20. 20.
    Brock, D.A., Douglas, T.E., Queller, D.C., Strassmann, J.E.: Primitive agriculture in a social amoeba. Nature 469, 393–396 (2011)CrossRefGoogle Scholar
  21. 21.
    Solow, R.: Technical change and the aggregate production function. Q. J. Econ. 70, 65–94 (1956)CrossRefGoogle Scholar
  22. 22.
    Todar, K.: Growth of bacterial populations. Todar’s Online Textbook of Bacteriology. Accessed 26th Dec 2018
  23. 23.
    Science. Amoeba Scale. Time Magazine (1954).,9171,890999,00.html. Last accessed Aug 31, 2019
  24. 24.
    Bardi, U.: New research determines the ultimate limits of renewable energy: the bardi sphere. Cassandra’s Legacy (2019). Accessed 5th May 2019
  25. 25.
    Berman, A.: The miracle of shale gas & tight oil is easy money Part I—art Berman. Art Berman Web Site (2016). Accessed 23rd Aug 2018
  26. 26.
    Sondland, G.: The fight for EU energy security_2. (2019). Last accessed Aug 31, 2019
  27. 27.
    Malthus, T.: An essay on the principle of population: or, A view of its past and present effects on human happiness. J. Johnson, London (1798)Google Scholar
  28. 28.
    Zubrin, R.: Merchants of Despair. Encounter Books (2013)Google Scholar
  29. 29.
    Ricardo, D.: The Works and Correspondence of David Ricardo. (Liberty Fund, 2005)Google Scholar
  30. 30.
    Marchetti, C.: Logistic curves in world history: marchetti and gell-mann. Cambridge Forecast Group Blog (2008). (Accessed: 1st March 2019)
  31. 31.
    Hubbert, M.: Nuclear energy and the fossil fuels. In: Spring Meeting of the Southern District, American Petroleum Institute, Plaza Hotel, San Antonio, Texas (1956)Google Scholar
  32. 32.
    Bardi, U.: Peak oil, 20 years later: failed prediction or useful insight? Energy Res. Soc. Sci. 48, 257–261 (2019)CrossRefGoogle Scholar
  33. 33.
    Scott Baker, C., Clapham, P.J.: Modelling the past and future of whales and whaling. Trends Ecol. Evol. 19, 365–371 (2004)CrossRefGoogle Scholar
  34. 34.
    Meyer-Gutbrod, E.L., Greene, C.H.: Uncertain recovery of the North Atlantic right whale in a changing ocean. Glob. Chang. Biol. 24, 455–464 (2018)CrossRefGoogle Scholar
  35. 35.
    Laherrère, J.: The Hubbert curve: its strenghts and weaknesses. Oil Gas J. (2000)Google Scholar
  36. 36.
    Guseo, R.: Worldwide cheap and heavy oil productions: a long-term energy model. Energy Policy 39, 5572–5577 (2011)CrossRefGoogle Scholar
  37. 37.
    Bardi, U.: The mineral economy: a model for the shape of oil production curves. Energy Policy 33, 53–61 (2005)CrossRefGoogle Scholar
  38. 38.
    Campbell, C.J., Laherrere, J.F.: The end of cheap oil. Sci. Am. 80–86 (1998)Google Scholar
  39. 39.
    Sweeney, L.B., Sterman, J.D.: Bathtub dynamics: initial results of a systems thinking inventory. Syst. Dyn. Rev. 16, 249–286 (2000)CrossRefGoogle Scholar
  40. 40.
    Perissi, I., Bardi, U., Asmar, T.El., Lavacchi, A.: Dynamic patterns of overexploitation in fisheries (2016). Accessed 26th Oct 2016
  41. 41.
    Perissi, I., Lavacchi, A., Bardi, U., El Asmar, T.: Dynamic patterns of overexploitation in fisheries. Ecol. Modell. 359 (2017)CrossRefGoogle Scholar
  42. 42.
    Taagepera, R.: Size and duration of empires: growth-decline curves, 600 B.C.–600 A.D. Soc. Sci. Hist. 3 115 (1979)Google Scholar
  43. 43.
    McConnell, J.R., et al.: Lead pollution recorded in Greenland ice indicates European emissions tracked plagues, wars, and imperial expansion during antiquity. Proc. Natl. Acad. Sci. USA 115, 5726–5731 (2018)CrossRefGoogle Scholar
  44. 44.
    Bardi, U.: The seneca effect: why decline is faster than growth. Cassandra’s Legacy (2011). Accessed 7th Feb 2019
  45. 45.
    Meadows, D.: Thinking in systems: A primer, Chelsea Greeen (2008)Google Scholar
  46. 46.
    Roddier, F.: Le phénomène de condensation des richesses. Point de vue d’un astronome (2019). Accessed 5th June 2019
  47. 47.
    Bardi, U.: Why have newspapers become so bad? there is a reason: it is another case of the ‘Seneca effect’. Cassandra’s Legacy (2015). Accessed 9th May 2019
  48. 48.
    Gordon, J.E.: Structures or Why Things Don’t Fall Down. Da Capo Press (1978)Google Scholar
  49. 49.
    Meadows, D.H., Meadows, D.L., Randers, J., Bherens III, W.: The Limits to Growth. Universe Books (1972)Google Scholar
  50. 50.
    Redazione.: Tourist killed by falling stone in Florence basilica. ANSA (2017). Accessed 19th Apr 2019
  51. 51.
    Graves, D.: Field artillery of the War of 1812: equipment, organization, tactics and effectiveness. The Napoleon Series, War 1812 Mag (2009). Last accessed 1st Sep 2019
  52. 52.
    ATLAS—the ATLAS project. ATLAS project (2018). Accessed 31st Dec 2018
  53. 53.
    Taleb, N.: The Black Swan. Random House (2007)Google Scholar
  54. 54.
    Sornette, D., Dragon-Kings, Black Swans and the Prediction of Crises. arXiv preprint arXiv:0907.4290v1 [] 18 (2009)
  55. 55.
    Laherrere, J., Sornette, D.: Stretched exponential distributions in nature and economy:“fat tails” with characteristic scales. Eur. Phys. J. B-Condens. B2, 525–539 (1998)CrossRefGoogle Scholar
  56. 56.
    Kanamaru, T.: Duffing oscillator. Scholarpedia 3, 6327 (2008)CrossRefGoogle Scholar
  57. 57.
    Lotka, A., J. : Elements of Physical Biology. Williams and Wilkins Company (1925). Scholar
  58. 58.
    Volterra, V.: Fluctuations in the abundance of a species considered mathematically. Nature 118, 558–560 (1926)CrossRefGoogle Scholar
  59. 59.
    Hall, C.A.S.S.: An assessment of several of the historically most influential theoretical models used in ecology and of the data provided in their support. Ecol. Modell. 43, 5–31 (1988)CrossRefGoogle Scholar
  60. 60.
    Serrouya, R., McLellan, B.N., Boutin, S.: Testing predator-prey theory using broad-scale manipulations and independent validation. J. Anim. Ecol. 84, 1600–1609 (2015)CrossRefGoogle Scholar
  61. 61.
    Bernard, L., Gevorkyan, A., Palley, T., Semmler, W.: Long-wave economic cycles: the contributions of Kondratieff, Kuznets, Schumpeter, Kalecki, Goodwin, Kaldor, and Minsky. Soc. Stud. Alm. (2014)Google Scholar
  62. 62.
    Schumpeter, J.A., Opie, R.: The theory of economic development; an inquiry into profits, capital, credit, interest, and the business cycle. Harvard University Press (1934)Google Scholar
  63. 63.
    Clark, C.W., Munro, G.R.: The economics of fishing and modern capital theory: a simplified approach. J. Environ. Econ. Manag. 2, 92–106 (1975)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of FlorenceFlorenceItaly

Personalised recommendations