Advertisement

Movies Recommendation System

  • Adrianna Frykowska
  • Izabela Zbieć
  • Patryk Kacperski
  • Peter Vesely
  • Andrea StudenicovaEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1035)

Abstract

Due to ever increasing number of newly released movies, a recommendation system may be of use to majority of cinematography fans. This paper presents an approach to create such a system using existing database containing informations about movies and how they are rated by people. Features describing year of production, cast, director, genres and average rating are being extracted and then used with a kNN classifier to decide how much would someone rate any movie in the database. Based on that rating, a number of not yet seen movies is selected and recommended.

References

  1. 1.
    Lekakos, G., Caravelas, P.: A hybrid approach for movie recommendation. Multimedia Tools Appl. 36, 55–70 (2008) CrossRefGoogle Scholar
  2. 2.
    Arora, G., Kumar, A., Devre, G.S., Ghumare, A.: Movie recommendation system based on users’ similarity. Int. J. Comput. Sci. Mobile Comput. 3, 765–770 (2014)Google Scholar
  3. 3.
    Eyjolfsdottir, E.A., Tilak, G., Li, N.: MovieGEN: A Movie Recommendation System (2010)Google Scholar
  4. 4.
    Johansson, P.: MADFILM – A Multimodal Approach to Handle Search and Organization in a Movie Recommendation System (2003)Google Scholar
  5. 5.
    Choi, S.-M., Ko, S.-K., Han, Y.-S.: A movie recommendation algorithm based on genre correlations. Expert Syst. Appl. 39(9), 8079–8085 (2012)CrossRefGoogle Scholar
  6. 6.
    Lee, J.-S., Park, S.-D.: Performance improvement of a movie recommendation system using genre-wise collaborative filtering. J. Intell. Inf. Syst. 13(4), 65–78 (2007)Google Scholar
  7. 7.
    Jeong, W.-H., Kim, S.-J., Park, D.-S., Kwak, J.: Performance improvement of a movie recommendation system based on personal propensity and secure collaborative filtering. J. Inf. Process. Syst. 1(9), 157–172 (2013)CrossRefGoogle Scholar
  8. 8.
    Szomszor, M., Cattuto, C., Alani, H., O’Hara, K., Baldassarri, A., Loreto, V., Servedio, V.: Folksonomies the Semantic Web and Movie Recommendation (2007)Google Scholar
  9. 9.
    Ahn, S., Shi, C.-K.: Exploring movie recommendation system using cultural metadata. In: Transactions on Edutainment II, pp. 119–134. Springer, Berlin (2009)CrossRefGoogle Scholar
  10. 10.
    Wang, Z., Yu, X., Feng, N., Wang, Z.: An improved collaborative movie recommendation system using computational intelligence. J. Vis. Lang. Comput. 25(6), 667–675 (2014)CrossRefGoogle Scholar
  11. 11.
    Mukherjee, R., Sajja, N., Sen, S.: A movie recommendation system - an application of voting theory in user modeling. User Model. User-Adap. Inter. 13(1), 5–33 (2003)CrossRefGoogle Scholar
  12. 12.
    Adeniyi, D.A., Wei, Z., Yongquan, Y.: Automated web usage data mining and recommendation system using K-Nearest Neighbor (KNN) classification method. Appl. Comput. Inform. 12(1), 90–108 (2016)CrossRefGoogle Scholar
  13. 13.
    Asanov, D.: Algorithms and Methods in Recommender Systems (2011)Google Scholar
  14. 14.
    json – Python 3.7.2rc1 documentation. https://docs.python.org/3/library/json.html. Accessed 17 Dec 2018
  15. 15.
    Pandas 0.23.4 documentation. https://pandas.pydata.org/pandas-docs/stable/. Accessed 17 Dec 2018
  16. 16.
    The Numbers – Top Movies of Each Year. https://www.the-numbers.com/movies/#tab=year. Accessed 18 Dec 2018
  17. 17.
    Poniszewska-Maranda, A.: Modeling and design of role engineering in development of access control for dynamic information systems. Bull. Polish Acad. Sci. Tech. Sci. 61(3), 569–580 (2013)Google Scholar
  18. 18.
    Majchrzycka, A., Poniszewska-Maranda, A.: Secure development model for mobile applications. Bull. Polish Acad. Sci. Tech. Sci. 64(3), 495–503 (2016)Google Scholar
  19. 19.
    Poniszewska-Maranda, A., Majchrzycka, A.: Access control approach in development of mobile applications. In: Younas, M., et al. (eds.) Mobile Web and Intelligent Information Systems, MobiWIS 2016, LNCS, vol. 9847, pp. 149-162. Springer, Heidelberg (2016)CrossRefGoogle Scholar
  20. 20.
    Kryvinska, N.: Building consistent formal specification for the service enterprise agility foundation. Soc. Serv. Sci. J. Serv. Sci. Res. 4(2), 235–269 (2012)CrossRefGoogle Scholar
  21. 21.
    Kaczor, S., Kryvinska, N.: It is all about services - fundamentals, drivers, and business models. Soc. Serv. Sci. J. Serv. Sci. Res. 5(2), 125–154 (2013)CrossRefGoogle Scholar
  22. 22.
    Gregus, M., Kryvinska, N.: Service Orientation of Enterprises – Aspects, Dimensions, Technologies. Comenius University in Bratislava (2015). (ISBN 9788022339780)Google Scholar
  23. 23.
    Poniszewska-Maranda, A.: Security constraints in access control of information system using UML language. In: Proceedings of 15th IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE-2006), UK (2006)Google Scholar
  24. 24.
    Poniszewska-Maranda, A.: Conception approach of access control in heterogeneous information systems using UML. J. Telecommun. Syst. 45(2–3), 177–190 (2010)CrossRefGoogle Scholar
  25. 25.
    Kryvinska, N., Gregus, M.: SOA and Its Business Value in Requirements, Features, Practices and Methodologies. Comenius University in Bratislava (2014). (ISBN 9788022337649)Google Scholar
  26. 26.
    Molnar, E., Molnar, R., Kryvinska, N., Gregus, M.: Web intelligence in practice. J. Serv. Sci. Res. 6(1), 149–172 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Adrianna Frykowska
    • 1
  • Izabela Zbieć
    • 1
  • Patryk Kacperski
    • 1
  • Peter Vesely
    • 2
  • Andrea Studenicova
    • 2
    Email author
  1. 1.Institute of Information TechnologyLodz University of TechnologyLodzPoland
  2. 2.Faculty of ManagementComenius UniversityBratislavaSlovakia

Personalised recommendations