Advertisement

21st Century Virology: Critical Steps

  • Paul ShapshakEmail author
Chapter

Abstract

Modernization and refurbishing virology are rapidly advancing as we embark the third decade of the 21st Century. This is needed so as to deepen the impact of the global public health establishment on disease reduction and improvement in well-being. One of the worst global scenarios has occurred, despite alerts and caveats from scientist, namely, global warming, with severe consequences, which promote lower levels of health, lapses in care, vector spread, and provides complementary alternative evolutionary pathways for disease proliferation and progression.

This chapter approaches the application of equations and computer-related intelligence to the study of biological viruses and summarizes certain theoretical advances in our understanding of energy and order/disorder (entropy), which are essential for advances in virology. This chapter further promotes advances in virology that are essential for fundamental attacks on vial infectious disease, therapy, and vaccines. (Computer as well as biological viruses are mentioned, because of their syzygy of yoked integral understanding.)

Keywords

Virus Virus detection Virology Biological viruses Electronic viruses Molecular biology DNA sequencing Genome Evolution Vaccines Thermodynamics Entropy Enthalpy Equations Fractals Computer-related intelligence Self-replication and repair Artificial Intelligence (AI) Quantum computers (QC) Clausius Feynman Gibbs Maxwell Boltzmann Einstein von Neumann 

Notes

Acknowledgements

Conversations with Dr. G. Baumslag (Institute for Advanced Study, Princeton, NJ), Dr. C. Smith (Princeton University, Princeton, NJ), and A. Pellionisz (Mountainview, CA) are acknowledged.

Conflicts of Interest

The author reports no conflicts of interest.

References

  1. 1.
    Kephart JO, Sorkin GB, Arnold WC, Chess DM, Tesauro GJ, White SR. Biologically inspired defenses against computer viruses. 1996;1:985–96. https://www.ijcai.org/Proceedings/95-1/Papers/127.pdf
  2. 2.
    Spafford EH. Computer viruses as artificial life. Artif Life. 1994;1:249–65. www.scs.carleton.ca/~soma/biosec/readings/spafford-viruses.pdfCrossRefGoogle Scholar
  3. 3.
    Cairns J, Stent GS, Watson JD. In: Watson JD, editor. Phage and the origins of molecular biology. Cold Spring Harbor: Cold Spring Harbor Lab; 1966.Google Scholar
  4. 4.
    Doerr R, Hallauer C. In: Hallauer C, editor. Handbuch der Virusforchung – erste Halfte. Vienna: Springer; 1938.Google Scholar
  5. 5.
    Fenner F. In: Gibbs A, editor. Portraits of virology: a history of virology. Basel: Karger; 1988.Google Scholar
  6. 6.
    Luria SE. General virology. New York: Wiley; 1953.Google Scholar
  7. 7.
    van Helvoort T. History of virus research in the 20th century: the problem of conceptual continuity. Hist Sci. 1994;32:185–235.PubMedCrossRefGoogle Scholar
  8. 8.
    van Helvoort T. When did virology start? Am Soc Microbiol News. 1996;62:142–5.Google Scholar
  9. 9.
    Waterson AP, Wilkinson L. An introduction to the history of virology. Cambridge, MA: Cambridge University Press; 1978.Google Scholar
  10. 10.
    Emerman M, Malik HS. Paleovirology—modern consequences of ancient viruses. PLoS Biol. 2010;8:e1000301.  https://doi.org/10.1371/journal.pbio.1000301.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Rybicki E. A short history of the discovery of viruses. 2018. https://www.researchgate.net/publication/279758269.
  12. 12.
    Flaviani F, Schroeder DC, Lebret K, Balestreri C, Highfield A, Schroeder JL, Thorpe SE, Moore K, Pasckiewicz K, Pfaff MC, Rybicki EP. Distinct oceanic microbiomes from viruses to protists located near the antarctic circumpolar current. Front Microbiol. 2018;9:1474.  https://doi.org/10.3389/fmicb.2018.01474.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Fernandez F, Minagar A, Alekseeva N, Shapshak P. Neuropsychiatric aspects of prion disease. In: Sadock BJ, Sadock VA, Ruiz P, editors. Comprehensive textbook of psychiatry. Philadelphia: Kluwer and Lippincott Publ; 2017. p. 601–18.Google Scholar
  14. 14.
    Shapshak P, Somboonwit C, Kuhn J, Sinnott JT, editors. Global virology I. Identifying and investigating viral diseases. New York: Springer Publ; 2015.Google Scholar
  15. 15.
    Shapshak P, Levine AJ, Somboonwit C, Foley BT, Singer E, Chiappelli F, Sinnott JT. Global virology II. HIV and NeuroAIDS. New York: Springer Publ; 2017.Google Scholar
  16. 16.
    Ravindran S. Barbara McClintock and the discovery of jumping genes. Proc Natl Acad Sci USA. 2012;109:20198–9. www.pnas.org/cgi/doi/10.1073/pnas.1219372109.PubMedCrossRefGoogle Scholar
  17. 17.
    Pandita D, Pandita A. Jumping genes- the other half of the human genome and the missing heritability conundrum of human genetic disorders. Br Biotechnol J. 2016;11:1–18. ISSN: 2231–2927. NLM ID: 101616695. https://www.researchgate.net/publication/290210528_Jumping_Genes-The_Other_Half_of_the_Human_Genome_and_the_Missing_Heritability_Conundrum_of_Human_Genetic_DisordersCrossRefGoogle Scholar
  18. 18.
    Belshaw R, Pereira V, Katzourakis A, Talbot G, Paces J, Burt A, Tristem M. Long-term reinfection of the human genome by endogenous retroviruses. Proc Natl Acad Sci U S A. 2004;101:4894–9.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Katzourakis A, Gifford RJ. Endogenous viral elements in animal genomes. PLoS Genet. 2010;6:e1001191.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Koonin EV. Taming of the shrewd: novel eukaryotic genes from RNA viruses. BMC Biol. 2010;8:2–11.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Boeke JD, Stoye JP. Retrotransposons, endogenous retro-viruses, and the evolution of retroelements. In: Coffin JM, Hughes SH, Varmus HE, editors. Retroviruses. Cold Spring Harbor: Cold Spring Harbor Press; 1997. p. 343–435.Google Scholar
  22. 22.
  23. 23.
  24. 24.
    Zeidanloo HR, Tabatabaei SF, Amoli PV, Tajpour A. All about malwares (malicious codes). 2010. https://pdfs.semanticscholar.org/a45e/50583a13e04b920f6ba04473612734967aa7.pdf.
  25. 25.
    Finklea K. Dark Web. Security. Congressional Research Service. 2017. https://fas.org/sgp/crs/misc/R44101.pdf.
  26. 26.
    Sui D, Caverlee J, Rudesill D. The deep web and the darknet: a look inside the internet’s massive black box. 2017. www.wilsoncenter.org https://www.wilsoncenter.org/sites/default/files/stip_dark_web.pdf.
  27. 27.
    MCB 137 Berkeley Virus Population Dynamics. 2016. https://mcb.berkeley.edu/courses/mcb137/exercises/Virus_Dynamics.pdf.
  28. 28.
    Balaji S, Akash R, Krittika N, Shapshak P. Sequence accuracy in primary databases: a case study on HIV-1B. In: Shapshak P, Levine AJ, Somboonwit C, Foley BT, Singer E, Chiappelli F, Sinnott JT, editors. Global virology II. HIV and NeuroAIDS. New York: Springer Publ; 2017.Google Scholar
  29. 29.
    Nagasaki M, Saito A, Doi A, Matsuno H, Miyano S. Foundations of systems biology using Cell Illustrator and pathway databases. New York: Springer Publ; 2009. Chapter 2 Pathway databases. p. 5–18.Google Scholar
  30. 30.
  31. 31.
    Kazic T. Semiotes: a semantics for sharing. Bioinformatics. 2000;16(12):1129–44.  https://doi.org/10.1093/bioinformatics/16.12.1129.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Adamek J, Rosicky J, Vitale EM. Algebraic theories. Cambridge Tracts in Mathematics 184. Cambridge, UK: Cambridge University Press; 2011. isbn: 978-0-521-11922-1Google Scholar
  33. 33.
    Schultz P, Spivak DI, Vasilakopoulou V, Wisnesky R. Algebraic databases. 2016. https://categoricaldata.net/fql/jfpslides.pdf.
  34. 34.
    Abiteboul S, Hull R, Vianu V. Foundations of databases. Reading: Addison-Wesley; 1995. isbn: 0-201-53771-0Google Scholar
  35. 35.
    Adamek J, Rosicky J. Locally presentable and accessible categories. London Mathematical Society Lecture Note Series 189. Cambridge: Cambridge University Press; 1994. isbn: 0-521-42261-2CrossRefGoogle Scholar
  36. 36.
    von Neumann J, Burks AW. Theory of Self-reproducing automata. Urbana, IL: University of Illinois Press; 1996.Google Scholar
  37. 37.
    Burgin M. Unified foundations for mathematics. Mathematics LO/0403186. 2004. 1–39. p.arXiv:math/0403186v1.Google Scholar
  38. 38.
    Pesavento U. An implementation of von Neumann’s self-reproducing machine. Artif Life. 1995;2:337–54.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Berrar D, Sato N, Schuster A. Quo Vadis, Artificial Intelligence? Adv Artif Intell. 2010;2010:629869, 12.  https://doi.org/10.1155/2010/629869.CrossRefGoogle Scholar
  40. 40.
    Girimonte D, Izzo D. Artificial intelligence for space applications. In: Schuster A, editor. Intelligent computing everywhere. London: Springer; 2007. p. 235–43.CrossRefGoogle Scholar
  41. 41.
    Good MC, Zalatan JG, Lim WA. Scaffold proteins: hubs for controlling the flow of cellular information. Science. 2011;332:680–6.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Popovic M. Researchers in an entropy wonderland: a review of the entropy concept. 2017. https://arxiv.org/pdf/1711.07326
  43. 43.
    Salamon P, Andresen B, Nulton J, and Konopka AK. The mathematical structure of thermodynamics. 1996. http://www.sci.sdsu.edu/~salamon/MathThermoStates.pdfGoogle Scholar
  44. 44.
    Tribus M, McIrving EC. Energy and information. Sci Am. 1971;225:179–88.CrossRefGoogle Scholar
  45. 45.
    Clausius R. The mechanical theory of heat. London: John van Voorst; 1879. https://www3.nd.edu/~powers/ame.20231/clausius1879.pdfGoogle Scholar
  46. 46.
    Schrodinger E. What is life? The physical aspect of the living cell. Cambridge: Cambridge University press, X printing; 2003.Google Scholar
  47. 47.
    Boltzmann L. The second law of thermodynamics (Theoretical physics and philosophical problems). New York: Springer-Verlag New York, LLC; 1974. ISBN 978-90-277-0250-0CrossRefGoogle Scholar
  48. 48.
    Shannon C. A mathematical theory of communication. Bell Syst Tech J. 1948;27:379–423.CrossRefGoogle Scholar
  49. 49.
    Prigogine I, Wiame JM. Irreversible thermodynamics. Experientia. 1946;2:451–3.PubMedCrossRefGoogle Scholar
  50. 50.
    Choi WM, Jung S, Jo YH, Lee S, Lee BJ. Design of new face-centered cubic high entropy alloys by thermodynamic calculation. Met Mater Int. 2017;23:839–47.  https://doi.org/10.1007/s12540-017-6701-1.CrossRefGoogle Scholar
  51. 51.
    Miracle DB, Senkov ON. A critical review of high entropy alloys and related concepts. Acta Mater. 2017;122:448–511.CrossRefGoogle Scholar
  52. 52.
    Tolman RC. Relativity, thermodynamics, and cosmology. New York: Dover Publ., Inc.; 1987.Google Scholar
  53. 53.
    Santra SB. Thermodynamics and statistical mechanics, A brief overview. 2014. http://www.iitg.ac.in/santra/course_files/ph443/thstm.pdfGoogle Scholar
  54. 54.
    Pan K, Deem MW. Quantifying selection and diversity in viruses by entropy methods, with application to the haemagglutinin of H3N2 influenza. J R Soc Interface. 2011;8:1644–53.  https://doi.org/10.1098/rsif.2011.0105.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Shapshak P, Chiappelli F, Somboonwit C, Sinnott JT. The influenza pandemic of 2009: Lessons and implications. Mol Diag Ther. 2011;15:63–81.CrossRefGoogle Scholar
  56. 56.
    Hoyle L, Davies SP. Amino ad composition of the protein components of influenza virus A. Virol. 1961;13:53–7.CrossRefGoogle Scholar
  57. 57.
    Ward CW, Dopheide TA. Amino acid sequence and oligosaccharide distribution of the HA from an early Hong Kong influenza virus variant A/Aichi/2/68(X-31). Biochem J. 1981;193:953–62.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Duncan RC, Knapp RG, Miller MC III. Introductory biostatistics for the health sciences. Albany: Delmar Publ. Inc.; 1983.Google Scholar
  59. 59.
    Rosner B. Fundamental of biostatistics. Pacific Grove: Duxbury Publ. Inc; 2000.Google Scholar
  60. 60.
    Reza FM. Information theory. New York: Dover Publ; 1994.Google Scholar
  61. 61.
    Holden T, Cheung E, Dehipawala S, Ye J, Tremberger G Jr, Lieberman D, Cheung T. Gene entropy-fractal dimension informatics with application to mouse-human translational medicine. BioMed Res Intern. 2013;2013:7. ID 582358.  https://doi.org/10.1155/2013/582358CrossRefGoogle Scholar
  62. 62.
    Zmeskal O, Dzik P, Vesely M. Entropy of fractal systems. Comput Math Appl. 2013;66:135–46.CrossRefGoogle Scholar
  63. 63.
    Holden T, Tremberger G, Cheung B, Subramanian R, Sullivan R, Gadura N, Schneider P, Marchese P, Flamholz A, Cheung T, Lieberman D. Fractal analysis of 16S rRNA gene sequences in archaea thermophiles. World Acad Sci Eng Technol Int J Bioeng Life Sci. 2008;2:192–6.Google Scholar
  64. 64.
    Tremberger G Jr, Dehipawala S, Cheung E, Yao H, Gadura N, Schneider P, Lieberman D, Holden T, Cheung T. Fractal analysis of FOXP2 regulated accelerated conserved non-coding sequences in human fetal brain. World Acad Sci Eng Techn. 2012;67:881–6.Google Scholar
  65. 65.
    Higuchi T. Approach to an irregular time series on the basis of fractal theory. Physica D. 1988;31:277–83. Kolmogorov AN, Zur Deutung der Intuitionistischen Logik. Math; 35: 57–65. 1932CrossRefGoogle Scholar
  66. 66.
    Riyazuddin M. Information analysis of DNA. 2005. https://arxiv.org/pdf/1010.4205Google Scholar
  67. 67.
    Kolmogorov AN. Zur Deutung der Intuitionistischen Logik. Math Z. 1932;35:57–65.Google Scholar
  68. 68.
    Kolmogorov AN. Three approaches to the quantitative definition of information. Probl Inf Transm. 1965;1:1–7.Google Scholar
  69. 69.
    Kolmogorov AN. Complexity of algorithms and objective definition of randomness. Uspekhi Mat Nauk. 1974;29:155. Moscow Math Soc meeting 4/16/1974Google Scholar
  70. 70.
    Kolmogorov AN. Combinatorial foundations of information theory and the calculus of probabilities. Russ Math Surv. 1983;38:29–40.CrossRefGoogle Scholar
  71. 71.
    Shen A, Vereshchagin N. Logical operations and Kolmogorov complexity. Theor Comp Sci. 2002;271:125–9.CrossRefGoogle Scholar
  72. 72.
    Terwijn SA, Torenvliet L, Vitnyi PMB. Nonapproximability of the normalized information distance. J Comp System Sci. 2013;77:738–42.CrossRefGoogle Scholar
  73. 73.
    Brouwer LEJ. Begrundung der Mengenlehre unabh angig vom logischen Satz vom ausgeschlossenen Dritten. Erster Teil, Allgemeine Mengenlehre, vol. 5. Kon Ned Ak Wet Verhandelingen; 1918. p. 1–43.Google Scholar
  74. 74.
    van Dalen D. Intuitionistic logic. In: Gobble L, editor. The blackwell guide to philosophica logic. Oxford: Blackwell; 2001. p. 224–57.Google Scholar
  75. 75.
    Kleene SC. Realizability: a retrospective survey. In: Mathias ARD, Rogers H, editors. Cambridge Summer School in Mathematical Logic, volume 337, of Lecture Notes in Mathematics. Cambridge, UK: Springer-Verlag; 1973. p. 95–112.CrossRefGoogle Scholar
  76. 76.
    van Oosten J. Axiomatizing higher-order Kleene realizability. Ann Pure Appl Logic. 1994;70:87–111.CrossRefGoogle Scholar
  77. 77.
    van Oosten J. Extensional realizability. Ann Pure Appl Logic. 1997;84:317–49.CrossRefGoogle Scholar
  78. 78.
    Grunwald P, Vitanyi P. Shannon information and Kolmogorov complexity. arXiv:cs/0410002v1 [cs.IT] 2004.Google Scholar
  79. 79.
    Gray RM. Entropy and information theory. Stanford, CA, Publ. 2013. https://ee.stanford.edu/~gray/it.html
  80. 80.
    Schuster AJ. In: Schuster AJ, editor. Intelligent computing everywhere. London: Springer Publ; 2007.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Division of Infectious Diseases and International Medicine, Department of Internal MedicineTampa General Hospital, USF Morsani College of MedicineTampaUSA

Personalised recommendations