Advertisement

Space Exploration and Travel, Future Technologies for Inflight Monitoring and Diagnostics

  • Jean-Pol FrippiatEmail author
Chapter

Abstract

Astronauts have been found to suffer from weakened immune systems. This phenomenon is frequently associated to latent virus reactivation. Maintaining crew health is therefore a concern to enable future long-term space missions such as those to Mars and beyond. Indeed, a Mars mission will imply 6 months of travel each way plus the surface stay. Thus, future space exploration needs innovative technologies to monitor health and perform personalized diagnostic and medicine. This chapter reviews some of the effects of spaceflight on the immune system and microorganisms, describes Earth-based models used to study the effects of such harsh environment, presents constraints associated to inflight analyses, biosensors for astronauts’ health inflight monitoring and some high-throughput “omics” technologies that are sufficiently developed to be ready for deployment and use soon onboard a spacecraft.

Keywords

Immunosuppression Virus Omics Personalized medicine Diagnostic Biosensor Miniaturization Automatic devices Extreme conditions Spaceflight 

Notes

Acknowledgments

JPF and his team acknowledge support from the French Space Agency (CNES), the European Space Agency (ESA), the French Ministry of Higher Education and Research, the Université de Lorraine, the Région Lorraine and the “Impact Biomolecules” project of the “Lorraine Université d’Excellence” (Investissements d’avenir – ANR).

References

  1. 1.
    Kimzey SL. Hematology and immunology studies. In: Johnson RS, Dietlein LF, editors. Biomedical Results from Skylab. Washington D.C.: National Aeronautics and Space Administration, U.S. Goverment Printing Office; 1977. p. 249–82.Google Scholar
  2. 2.
    Guéguinou N, Huin-Schohn C, Bascove M, Bueb JL, Tschirhart E, Legrand-Frossi C, et al. Could spaceflight-associated immune system weakening preclude the expansion of human presence beyond Earth’s orbit? J Leukoc Biol. 2009;86:1027–38.  https://doi.org/10.1189/jlb.0309167.CrossRefPubMedGoogle Scholar
  3. 3.
    Frippiat JP, Crucian BE, de Quervain DJF, Grimm D, Montano N, Praun S, et al. Towards human exploration of space: the THESEUS review series on immunology research priorities. NPJ Microgravity. 2016;2:16040.  https://doi.org/10.1038/npjmgrav.2016.40.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Crucian B, Stowe RP, Mehta S, Quiriarte H, Pierson D, Sams C. Alterations in adaptive immunity persist during long-duration spaceflight. NPJ Microgravity. 2015;1:15013.  https://doi.org/10.1038/npjmgrav.2015.13.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Mehta SK, Laudenslager ML, Stowe RP, Crucian BE, Feiveson AH, Sams CF, et al. Latent virus reactivation in astronauts on the international space station. NPJ Microgravity. 2017;3:11.  https://doi.org/10.1038/s41526-017-0015-y.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Crucian B, Babiak-Vazquez A, Johnston S, Pierson DL, Ott CM, Sams C. Incidence of clinical symptoms during long-duration orbital spaceflight. Int J Gen Med. 2016;9:383–91.  https://doi.org/10.2147/IJGM.S114188.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Crucian B, Johnston S, Mehta S, Stowe R, Uchakin P, Quiriarte H, et al. A case of persistent skin rash and rhinitis with immune system dysregulation onboard the International Space Station. J Allergy Clin Immunol Pract. 2016;4:759–62.  https://doi.org/10.1016/j.jaip.2015.12.021.CrossRefPubMedGoogle Scholar
  8. 8.
    Kaur I, Simons ER, Kapadia AS, Ott CM, Pierson DL. Effect of spaceflight on ability of monocytes to respond to endotoxins of gram-negative bacteria. Clin Vaccine Immunol. 2008;15:1523–8.  https://doi.org/10.1128/CVI.00065-08.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Rykova MP, Antropova EN, Larina IM, Morukov BV. Humoral and cellular immunity in cosmonauts after the ISS missions. Acta Astronaut. 2008;63:697–705.  https://doi.org/10.1016/j.actaastro.2008.03.016.CrossRefGoogle Scholar
  10. 10.
    Crucian B, Stowe R, Quiriarte H, Pierson D, Sams C. Monocyte phenotype and cytokine production profiles are dysregulated by short-duration spaceflight. Aviat Space Environ Med. 2011;82:857–62.CrossRefGoogle Scholar
  11. 11.
    Brungs S, Kolanus W, Hemmersbach R. Syk phosphorylation – a gravisensitive step in macrophage signalling. Cell Commun Signal. 2015;13:9.  https://doi.org/10.1186/s12964-015-0088-8.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Kaur I, Simons ER, Castro VA, Ott CM, Pierson DL. Changes in neutrophil functions in astronauts. Brain Behav Immun. 2004;18:443–50.  https://doi.org/10.1016/j.bbi.2003.10.005.CrossRefPubMedGoogle Scholar
  13. 13.
    Cogoli A, Tschopp A, Fuchs-Bislin P. Cell sensitivity to gravity. Science. 1984;225:228–30.CrossRefGoogle Scholar
  14. 14.
    Cogoli A. The effect of space flight on human cellular immunity. Environ Med. 1993;37:107–6.PubMedGoogle Scholar
  15. 15.
    Gridley DS, Slater JM, Luo-Owen X, Rizvi A, Chapes SK, Stodieck LS, et al. Spaceflight effects on T lymphocyte distribution, function and gene expression. J Appl Physiol. 2009;106:194–202.  https://doi.org/10.1152/japplphysiol.91126.2008.CrossRefPubMedGoogle Scholar
  16. 16.
    Walther I, Pippia P, Meloni MA, Turrini F, Mannu F, Cogoli A. Simulated microgravity inhibits the genetic expression of interleukin-2 and its receptor in mitogen-activated T lymphocytes. FEBS Lett. 1998;436:115–8.  https://doi.org/10.1016/S0014-5793(98)01107-7.CrossRefPubMedGoogle Scholar
  17. 17.
    Sciola L, Cogoli-Greuter M, Cogoli A, Spano A, Pippia P. Influence of microgravity on mitogen binding and cytoskeleton in Jurkat cells. Adv Space Res. 1999;24:801–5.  https://doi.org/10.1016/S0273-1177(99)00078-2.CrossRefPubMedGoogle Scholar
  18. 18.
    Cogoli-Greuter M. Effect of gravity changes on the cytoskeleton in human lymphocytes. Gravit Space Biol Bull. 2004;17:27–37.Google Scholar
  19. 19.
    Meloni MA, Galleri G, Camboni MG, Pippia P, Cogoli A, Cogoli-Greuter M. Modeled microgravity affects motility and cytoskeletal structures. J Gravit Physiol. 2004;11:197–8.Google Scholar
  20. 20.
    Meloni MA, Galleri G, Pippia P, Cogoli-Greuter M. Cytoskeleton changes and impaired motility of monocytes at modelled low gravity. Protoplasma. 2006;229:243–9.  https://doi.org/10.1007/s00709-006-0210-2.CrossRefPubMedGoogle Scholar
  21. 21.
    Meloni MA, Galleri G, Pani G, Saba A, Pippia P, Cogoli-Greuter M. Space flight affects motility and cytoskeletal structures in human monocyte cell line J-111. Cytoskelet Hoboken NJ. 2011;68:125–37.  https://doi.org/10.1002/cm.20499.CrossRefGoogle Scholar
  22. 22.
    Boonyaratanakornkit JB, Cogoli A, Li CF, Schopper T, Pippia P, Galleri G, et al. Key gravity-sensitive signaling pathways drive T-cell activation. FASEB J. 2005;19:2020–2.  https://doi.org/10.1096/fj.05-3778fje.CrossRefPubMedGoogle Scholar
  23. 23.
    Chang TT, Walther I, Li CF, Boonyaratanakornkit J, Galleri G, Meloni MA, et al. The Rel/NF-κB pathway and transcription of immediate early genes in T cell activation are inhibited by microgravity. J Leukoc Biol. 2012;92:1133–45.  https://doi.org/10.1189/jlb.0312157.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Martinez EM, Yoshida MC, Candelario TL, Hughes-Fulford M. Spaceflight and simulated microgravity cause a significant reduction of key gene expression in early T-cell activation. Am J Physiol Regul Integr Comp Physiol. 2015;308:R480–8.  https://doi.org/10.1152/ajpregu.00449.2014.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Thiel CS, Paulsen K, Bradacs G, Lust K, Tauber S, Dumrese C, et al. Rapid alterations of cell cycle control proteins in human T lymphocytes in microgravity. Cell Commun Signal. 2012;10:1.  https://doi.org/10.1186/1478-811X-10-1.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Frippiat JP. Contribution of the urodele amphibian Pleurodeles waltl to the analysis of spaceflight-associated immune system deregulation. Mol Immunol. 2013;56:434–41.  https://doi.org/10.1016/j.molimm.2013.06.011.CrossRefPubMedGoogle Scholar
  27. 27.
    Boxio R, Dournon C, Frippiat JP. Effets of a long-term spaceflight on immunoglobulin heavy chains of the urodele amphibian Pleurodeles waltl. J Appl Physiol. 2005;98:905–10.CrossRefGoogle Scholar
  28. 28.
    Bascove M, Huin-Schohn C, Guéguinou N, Tschirhart E, Frippiat JP. Spaceflight-associated changes in immunoglobulin VH gene expression in the amphibian Pleurodeles waltl. FASEB J. 2009;23:1607–15.  https://doi.org/10.1096/fj.08-121327.CrossRefPubMedGoogle Scholar
  29. 29.
    Bascove M, Guéguinou N, Schaerlinger B, Gauquelin-Koch G, Frippiat JP. Decrease in antibody somatic hypermutation frequency under extreme, extended spaceflight conditions. FASEB J. 2011;25:2947–55.  https://doi.org/10.1096/fj.11-185215.CrossRefPubMedGoogle Scholar
  30. 30.
    Guéguinou N, Bojados M, Jamon M, Derradji H, Baatout S, Tschirhart E, et al. Stress response and humoral immune system alterations related to chronic hypergravity in mice. Psychoneuroendocrinology. 2012;37:137–47.  https://doi.org/10.1016/j.psyneuen.2011.05.015.CrossRefPubMedGoogle Scholar
  31. 31.
    Gaignier F, Schenten V, De Carvalho Bittencourt M, Gauquelin-Koch G, Frippiat JP, Legrand-Frossi C. Three weeks of murine hindlimb unloading induces shifts from B to T and from Th to Tc splenic lymphocytes in absence of stress and differentially reduces cell-specific mitogenic responses. PLoS One. 2014;9:e92664.  https://doi.org/10.1371/journal.pone.0092664.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Vacek A, Michurina TV, Serova LV, Rotkovská D, Bartonícková A. Decrease in the number of progenitors of erythrocytes (BFUe, CFUe), granulocytes and macrophages (GM-CFC) in bone marrow of rats after a 14-day flight onboard the Cosmos-2044 Biosatellite. Folia Biol. 1991;37:35–41.Google Scholar
  33. 33.
    Davis TA, Wiesmann W, Kidwell W, Cannon T, Kerns L, Serke C, et al. Effect of spaceflight on human stem cell hematopoiesis: suppression of erythropoiesis and myelopoiesis. J Leukoc Biol. 1996;60:69–76.CrossRefGoogle Scholar
  34. 34.
    Ichiki AT, Gibson LA, Jago TL, Strickland KM, Johnson DL, Lange RD, et al. Effects of spaceflight on rat peripheral blood leukocytes and bone marrow progenitor cells. J Leukoc Biol. 1996;60:37–43.CrossRefGoogle Scholar
  35. 35.
    Ortega MT, Pecaut MJ, Gridley DS, Stodieck LS, Ferguson V, Chapes SK. Shifts in bone marrow cell phenotypes caused by spaceflight. J Appl Physiol. 2009;106:548–55.  https://doi.org/10.1152/japplphysiol.91138.2008.CrossRefPubMedGoogle Scholar
  36. 36.
    Sotnezova EV, Markina EA, Andreeva ER, Buravkova LB. Myeloid precursors in the bone marrow of mice after a 30-day space mission on a Bion-M1 biosatellite. Bull Exp Biol Med. 2017;162:496–500.  https://doi.org/10.1007/s10517-017-3647-8.CrossRefPubMedGoogle Scholar
  37. 37.
    Huin-Schohn C, Guéguinou N, Schenten V, Bascove M, Gauquelin-Koch G, Baatout S, et al. Gravity changes during animal development affect IgM heavy-chain transcription and probably lymphopoiesis. FASEB J. 2013;27:333–41.  https://doi.org/10.1096/fj.12-217547.CrossRefPubMedGoogle Scholar
  38. 38.
    Lescale C, Schenten V, Djeghloul D, Bennabi M, Gaignier F, Vandamme K, et al. Hind limb unloading, a model of spaceflight conditions, leads to decreased B lymphopoiesis similar to aging. FASEB J. 2015;29:455–63.  https://doi.org/10.1096/fj.14-259770.CrossRefPubMedGoogle Scholar
  39. 39.
    Tascher G, Gerbaix M, Maes P, Chazarin B, Ghislin S, Antropova E, et al. Analysis of femurs from mice embarked on board BION-M1 biosatellite reveals a decrease in immune cell development, including B cells, after 1 wk of recovery on Earth. FASEB J. 2019;  https://doi.org/10.1096/fj.201801463R.CrossRefGoogle Scholar
  40. 40.
    Woods CC, Banks KE, Gruener R, DeLuca D. Loss of T cell precursors after spaceflight and exposure to vector-averaged gravity. FASEB J. 2003;17:1526–8.  https://doi.org/10.1096/fj.02-0749fje.CrossRefPubMedGoogle Scholar
  41. 41.
    Woods CC, Banks KE, Lebsack TW, White TC, Anderson G, Maccallum T, et al. Use of a microgravity organ culture dish system to demonstrate the signal dampening effects of modeled microgravity during T cell development. Dev Comp Immunol. 2005;29:565–82.  https://doi.org/10.1016/j.dci.2004.09.006.CrossRefPubMedGoogle Scholar
  42. 42.
    Ghislin S, Ouzren-Zarhloul N, Kaminski S, Frippiat JP. Hypergravity exposure during gestation modifies the TCRβ repertoire of newborn mice. Sci Rep. 2015;5:9318.  https://doi.org/10.1038/srep09318.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Taylor GR, Janney RP. In vivo testing confirms a blunting of the human cell-mediated immune mechanism during space-flight. J Leukoc Biol. 1992;51:129–32.  https://doi.org/10.1002/jlb.51.2.129.CrossRefPubMedGoogle Scholar
  44. 44.
    Meshkov D, Rykova M. The natural cytotoxicity in cosmonauts on board space stations. Acta Astronaut. 1995;36:719–26.  https://doi.org/10.1016/0094-5765(95)00162-X.CrossRefPubMedGoogle Scholar
  45. 45.
    Mehta SK, Cohrs RJ, Forghani B, Zerbe G, Gilden DH, Pierson DL. Stress- induced subclinical reactivation of varicella zoster virus in astronauts. J Med Virol. 2004;72:174–9.  https://doi.org/10.1002/jmv.10555.. 196.CrossRefPubMedGoogle Scholar
  46. 46.
    Cohrs RJ, Mehta SK, Schmid DS, Gilden DH, Pierson DL. Asymptomatic reactivation and shed of infectious varicella zoster virus in astronauts. J Med Virol. 2008;80:1116–22.  https://doi.org/10.1002/jmv.21173.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Mehta SK, Laudenslager ML, Stowe RP, Crucian BE, Sams CF, Pierson DL. Multiple latent viruses reactivate in astronauts during space shuttle missions. Brain Behav Immun. 2014;41:210–7.  https://doi.org/10.1016/j.bbi.2014.05.014.. 198.CrossRefPubMedGoogle Scholar
  48. 48.
    Meehan R, Whitson P, Sams C. The role of Psychoneuroendocrine factors on spaceflight-induced immunological alterations. J Leukoc Biol. 1993;54:236–44.CrossRefGoogle Scholar
  49. 49.
    Crucian BE, Cubbage ML, Sams CF. Altered cytokine production by specific human peripheral blood cell subsets immediately following space flight. J Interf Cytokine Res. 2000;20:547–56.  https://doi.org/10.1089/10799900050044741.CrossRefGoogle Scholar
  50. 50.
    Mehta SK, Stowe RP, Feiveson AH, Tyring SK, Pierson DL. Reactivation and shedding of cytomegalovirus in astronauts during spaceflight. J Infect Dis. 2000;182:1761–4.  https://doi.org/10.1086/317624.CrossRefPubMedGoogle Scholar
  51. 51.
    Mehta SK, Crucian BE, Stowe RP, Simpson RJ, Ott CM, Sams CF, et al. Reactivation of latent viruses is associated with increased plasma cytokines in astronauts. Cytokine. 2013;61:205–9.  https://doi.org/10.1016/j.cyto.2012.09.019.CrossRefPubMedGoogle Scholar
  52. 52.
    Stowe RP, Mehta SK, Ferrando AA, Feeback DL, Pierson DL. Immune responses and latent herpesvirus reactivation in spaceflight. Aviat Space Environ Med. 2001;72:884–91.PubMedGoogle Scholar
  53. 53.
    Stowe RP, Pierson DL, Barrett ADT. Elevated stress hormone levels relate to Epstein-Barr virus reactivation in astronauts. Psychosom Med. 2001;63:891–5.CrossRefGoogle Scholar
  54. 54.
    Horneck G, Klaus DM, Mancinelli RL. Space microbiology. Microbiol Mol Biol Rev. 2010;74:121–56.  https://doi.org/10.1128/MMBR.00016-09.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Zea L, Prasad N, Levy SE, Stodieck L, Jones A, Shrestha S, et al. A molecular genetic basis explaining altered bacterial behavior in space. PLoS One. 2016;11:e0164359.  https://doi.org/10.1371/journal.pone.0164359.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Rosenzweig JA, Ahmed S, Eunson J, Chopra AK. Low-shear force associated with modeled microgravity and spaceflight does not similarly impact the virulence of notable bacterial pathogens. Appl Microbiol Biotechnol. 2014;98:8797–807.  https://doi.org/10.1007/s00253-014-6025-8.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Cervantes JL, Hong BY. Dysbiosis and immune dysregulation in outer space. Int Rev Immunol. 2015;35:67–82.  https://doi.org/10.3109/08830185.2015.1027821.CrossRefPubMedGoogle Scholar
  58. 58.
    Klaus DM, Howard HN. Antibiotic efficacy and microbial virulence during space flight. Trends Biotechnol. 2006;24:131–6.  https://doi.org/10.1016/j.tibtech.2006.01.008.CrossRefPubMedGoogle Scholar
  59. 59.
    Lynch SV, Mukundakrishnan K, Benoit MR, Ayyaswamy PS, Matin A. Escherichia coli biofilms formed under low-shear modeled microgravity in a ground-based system. Appl Environ Microbiol. 2006;72:7701–10.  https://doi.org/10.1128/AEM.01294-06.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Kim H, Bhunia AK. Secreted Listeria adhesion protein (Lap) influences Lap-mediated Listeria monocytogenes paracellular translocation through epithelial barrier. Gut Pathog. 2013;5:16.  https://doi.org/10.1186/1757-4749-5-16.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Crabbé A, Schurr MJ, Monsieurs P, Morici L, Schurr J, Wilson JW, et al. Transcriptional and proteomic responses of Pseudomonas aeruginosa PAO1 to spaceflight conditions involve Hfq regulation and reveal a role for oxygen. Appl Environ Microbiol. 2011;77:1221–30.  https://doi.org/10.1128/AEM.01582-10.CrossRefPubMedGoogle Scholar
  62. 62.
    Shi J, Wang Y, He J, Li P, Jin R, Wang K, et al. Intestinal microbiota contributes to colonic epithelial changes in simulated microgravity mouse model. FASEB J. 2017;31:3695–709.  https://doi.org/10.1096/fj.201700034R.CrossRefPubMedGoogle Scholar
  63. 63.
    Juergensmeyer MA, Juergensmeyer EA, Guikema JA. Long-term exposure to spaceflight conditions affects bacterial response to antibiotics. Microgravity Sci Technol. 1999;12:41–7.PubMedGoogle Scholar
  64. 64.
    Fuse A, Sato T. Effect of microgravity changes on virus infection in mice. J Gravit Physiol. 2004;11:P65–6.PubMedGoogle Scholar
  65. 65.
    Yurov SS, Akoev IG, Akhmadieva AK, Livanova IA, Leont’eva GA, Marennyi AM, et al. Genetic effects of cosmic radiation on bacteriophage T4Br+ (on materials of biological experiment “Soyuz-Apollo”). Life Sci Space Res. 1979;17:129–32.CrossRefGoogle Scholar
  66. 66.
    Yurov SS, Akoev IG, Leont’eva GA. Effect of HZE particles and space hadrons on bacteriophages. Adv Space Res. 1983;3:51–60.CrossRefGoogle Scholar
  67. 67.
    Hargens AR, Vico L. Long-duration bed rest as an analog to microgravity. J Appl Physiol. 2016;120:891–903.  https://doi.org/10.1152/japplphysiol.00935.2015.CrossRefPubMedGoogle Scholar
  68. 68.
    Globus RK, Morey-Holton E. Hindlimb unloading: rodent analog for microgravity. J Appl Physiol. 2016;120:1196–206.  https://doi.org/10.1152/japplphysiol.00997.2015.CrossRefPubMedGoogle Scholar
  69. 69.
    Sonnenfled G. Use of animal models for space flight physiology studies, with special focus on the immune system. Gravit Space Biol Bull. 2005;18:31–5.Google Scholar
  70. 70.
    Gould CL, Sonnenfeld G. Enhancement of viral pathogenesis in mice maintained in an antiorthostatic suspension model: coordination with effects on interferon production. J Biol Regul Homeost Agents. 1987;1:33–6.PubMedGoogle Scholar
  71. 71.
    O’Donnell PM, Orshal JM, Sen D, Sonnenfeld G, Aviles HO. Effects of exposure of mice to hindlimb unloading on leukocyte subsets and sympathetic nervous system activity. Stress. 2009;12:82–8.  https://doi.org/10.1080/10253890802049269.CrossRefPubMedGoogle Scholar
  72. 72.
    Belay T, Aviles H, Vance M, Fountain K, Sonnenfeld G. Effects of the hindlimb-unloading model of spaceflight conditions on resistance of mice to infection with Klebsiella pneumoniae. J Allergy Clin Immunol. 2002;110:262–8.CrossRefGoogle Scholar
  73. 73.
    Aviles H, Belay T, Fountain K, Vance M, Sonnenfeld G. Increased susceptibility to Pseudomonas aeruginosa infection under hindlimb-unloading conditions. J Appl Physiol. 2003;95:73–80.CrossRefGoogle Scholar
  74. 74.
    Crucian BE, Stowe RP, Mehta SK, Yetman DL, Leal MJ, Quiriarte HD, et al. Immune status, latent viral reactivation, and stress during long-duration head-down bed rest. Aviat Space Environ Med. 2009;80(5 Suppl):A37–44.CrossRefGoogle Scholar
  75. 75.
    Kelsen J, Bartels LE, Dige A, Hvas CL, Frings-Meuthen P, Boehme G, et al. 21 Days head-down bed rest induces weakening of cell-mediated immunity – some spaceflight findings confirmed in a ground-based analog. Cytokine. 2012;59:403–9.  https://doi.org/10.1016/j.cyto.2012.04.032.CrossRefPubMedGoogle Scholar
  76. 76.
    Mehta SK, Crucian B, Pierson DL, Sams C, Stowe RP. Monitoring immune system function and reactivation of latent viruses in the Artificial Gravity Pilot Study. J Gravit Physiol. 2007;14:P21–5.PubMedGoogle Scholar
  77. 77.
    Uchakin PN, Stowe RP, Paddon-Jones D, Tobin BW, Ferrando AA, Wolfe RR. Cytokine secretion and latent herpes virus reactivation with 28 days of horizontal hypokinesia. Aviat Space Environ Med. 2007;78:608–12.PubMedGoogle Scholar
  78. 78.
    Karouia F, Peyvan K, Pohorille A. Toward biotechnology in space: high-throughput instruments for in situ biological research beyond Earth. Biotechnol Adv. 2017;35:905–32.  https://doi.org/10.1016/j.biotechadv.2017.04.003.CrossRefPubMedGoogle Scholar
  79. 79.
    Nelson E, Chait A. Portable diagnostics technology assessment for space missions. NASA. 2010. https://ntrs.nasa.gov/search.jsp?R=20100011008 2019–02-28T16:23:06+00:00Z.
  80. 80.
    Cohrs RL. Rapid salive test for varicella zoster virus. New Horiz Transl Med. 2015;2:5.  https://doi.org/10.1016/j.nhtm.2014.11.036.CrossRefGoogle Scholar
  81. 81.
    Technology Transfer & Commercialization Office. Rapid detection of shingles (varicella zoster virus- VZV). NASA. 2012. https://www.nasa.gov/centers/johnson/pdf/690989main_VZV%20TOPSheet.pdf.
  82. 82.
    Graebe A, Schuck EL, Lensing P, Putcha L, Derendorf H. Physiological, pharmacokinetic, and pharmacodynamic changes in space. J Clin Pharmacol. 2004;44:837–53.  https://doi.org/10.1177/0091270004267193.CrossRefPubMedGoogle Scholar
  83. 83.
    Kast J, Yu Y, Seubert CN, Wotring VE, Derendorf H. Drugs in space: pharmacokinetics and pharmacodynamics in astronauts. Eur J Pharm Sci. 2017;109S:S2–8.  https://doi.org/10.1016/j.ejps.2017.05.025.CrossRefPubMedGoogle Scholar
  84. 84.
    Goncharov IB. Research on the particulars of pharmacological effects during long-term spaceflight. NASA. 2018. https://www.nasa.gov/mission_pages/station/research/experiments/533.html.
  85. 85.
    Stenzel C. Deployment of precise and robust sensors on board ISS for scientific experiments and for operation of the station. Anal Bioanal Chem. 2016;408:6517–36.  https://doi.org/10.1007/s00216-016-9789-0.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Dubeau-Laramée G, Rivière C, Jean I, Mermut O, Cohen LY. Microflow1, a sheathless fiber-optic flow cytometry biomedical platform: demonstration onboard the International Space Station. Cytometry A. 2014;85:322–31.  https://doi.org/10.1002/cyto.a.22427.CrossRefPubMedGoogle Scholar
  87. 87.
    Office of Technology Partnerships and Planning. The rHEALTH sensor. NASA. 2011. https://technology.grc.nasa.gov/documents/_6_Universalbiomedicalanalysissensor_SS-rHealth-2011.pdf.
  88. 88.
    Roda A, Mirasoli M, Guardigli M, Zangheri M, Caliceti C, Calabria D, Simoni P. Advanced biosensors for monitoring astronauts’ health during long-duration space missions. Biosens Bioelectron. 2018;111:18–26.  https://doi.org/10.1016/j.bios.2018.03.062.CrossRefPubMedGoogle Scholar
  89. 89.
    Zangheri M, Mirasoli M, Guardigli M, Di Nardo F, Anfossi L, Baggiani C, et al. Chemiluminescence-based biosensor for monitoring astronauts’ health status during space missions: results from the International Space Station. Biosens Bioelectron. 2019;129:260–8.  https://doi.org/10.1016/j.bios.2018.09.059.CrossRefPubMedGoogle Scholar
  90. 90.
    Crews N, Ameel T, Wittwer C, Gale B. Flow-induced thermal effects on spatial DNA melting. Lab Chip. 2008;8:1922–9.  https://doi.org/10.1039/b807034b.CrossRefPubMedGoogle Scholar
  91. 91.
    Zanella I, Merola F, Biasiotto G, Archetti S, Spinelli E, Di Lorenzo D. Evaluation of the Ion Torrent PGM sequencing workflow for the routine rapid detection of BRCA1 and BRCA2 germline mutations. Exp Mol Pathol. 2017;102:314–20.  https://doi.org/10.1016/j.yexmp.2017.03.001.CrossRefPubMedGoogle Scholar
  92. 92.
    Castro-Wallace SL, Chiu CY, John KK, Stahl SE, Rubins KH, McIntyre, et al. Nanopore DNA sequencing and genome assembly on the International Space Station. Sci Rep. 2017;7:18022.  https://doi.org/10.1038/s41598-017-18364-0.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Briggs K, Madejski G, Magill M, Kastritis K, de Haan HW, McGrath JL, et al. DNA Translocations through nanopores under nanoscale preconfinement. Nano Lett. 2018;18:660–8.  https://doi.org/10.1021/acs.nanolett.7b03987.CrossRefPubMedGoogle Scholar
  94. 94.
    Shapshak P, Somboonwit C, Sinnott JT. Artificial intelligence and virology – quo vadis. Bioinformation. 2017;13:410–1.  https://doi.org/10.6026/97320630013410.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Stress Immunity Pathogens Laboratory, EA 7300, Faculty of Medicine, Université de LorraineVandœuvre-lès-NancyFrance

Personalised recommendations