HIV and Injection Drug Use: New Approaches to HIV Prevention

  • Charurut SomboonwitEmail author
  • Lianet Vazquez
  • Lynette J. Menezes


Injection drug use has become a major public health problem. Its emerging significance is demonstrated globally in the dual HIV and HCV epidemics among people who inject drugs (PWID). Despite the advent of effective antivirals against HIV and HCV, PWID face multiple barriers to access and adherence to such treatments. Additionally, the lack of infrastructure for medication-assisted therapy for opioid addiction, inadequate treatment for underlying mental health disorders, and poor access to needle-syringe exchange programs and HIV pre-exposure prophylaxis pose grave challenges to control these epidemics. In this chapter, we focus on the impact of the global injection drug use epidemic as well as new approaches on HIV prevention and the HIV care continuum for people who inject drugs.


HIV PWID Artificial intelligence Machine learning Injection drug use Care continuum Social media Phylodynamics Phylogenetic Digital technologies 


Conflicts of Interest

The authors report no potential conflicts of interest.


  1. 1.
    World Health Organization (WHO). HIV/AIDS. Published 2018. Updated July 19, 2018. Accessed 15 Apr 2019.
  2. 2.
    Degenhardt L, Peacock A, Colledge S, et al. Global prevalence of injecting drug use and sociodemographic characteristics and prevalence of HIV, HBV, and HCV in people who inject drugs: a multistage systematic review. Lancet Glob Health. 2017;5(12):e1192–207.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    World Health Organization (WHO). HIV/AIDS: People who inject drugs. Published 2019. Accessed 15 Apr 2019.
  4. 4.
    Shapshak P, Kangueane P, Fujimura RK, et al. Editorial neuroAIDS review. AIDS (London, England). 2011;25(2):123–41.CrossRefGoogle Scholar
  5. 5.
    Tyagi M, Bukrinsky M, Simon GL. Mechanisms of HIV transcriptional regulation by drugs of abuse. Curr HIV Res. 2016;14(5):442–54.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Tyagi M, Weber J, Bukrinsky M, Simon GL. The effects of cocaine on HIV transcription. J Neurovirol. 2016;22(3):261–74.PubMedCrossRefGoogle Scholar
  7. 7.
    Csete J, Kamarulzaman A, Kazatchkine M, et al. Public health and international drug policy. Lancet (London, England). 2016;387(10026):1427–80.CrossRefGoogle Scholar
  8. 8.
    Cicero TJ, Ellis MS, Surratt HL, Kurtz SP. The changing face of heroin use in the United States: a retrospective analysis of the past 50 years. JAMA Psychiat. 2014;71(7):821–6.CrossRefGoogle Scholar
  9. 9.
    Carlson RG, Nahhas RW, Martins SS, Daniulaityte R. Predictors of transition to heroin use among initially non-opioid dependent illicit pharmaceutical opioid users: a natural history study. Drug Alcohol Depend. 2016;160:127–34.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    National Institute on Drug Abuse. Opioid overdose crisis. Published 2019. Updated January 2019. Accessed 15 Apr 2019.
  11. 11.
    Scholl L, Seth P, Kariisa M, Wilson N, Baldwin G. Drug and opioid-involved overdose deaths – United States, 2013–2017. MMWR Morb Mortal Wkly Rep. 2018;67(5152):1419–27.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Joint United Nations Programme on HIV/AIDS (UNAIDS). Miles to go. Closing gaps, breaking barriers, righting injustices. 2018. Accessed 16 Apr 2019.
  13. 13.
    Campbell EM, Jia H, Shankar A, et al. Detailed transmission network analysis of a large opiate-driven outbreak of HIV infection in the United States. J Infect Dis. 2017;216(9):1053–62.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Lundgren JD, Babiker AG, Gordin F, et al. Initiation of antiretroviral therapy in early asymptomatic HIV infection. N Engl J Med. 2015;373(9):795–807.PubMedCrossRefGoogle Scholar
  15. 15.
    WHO. Guideline on when to start antiretroviral therapy and on pre-exposure prophylaxis. Geneva: World Health Organization.Google Scholar
  16. 16.
    Joint United Nations Programme on HIV/AIDS (UNAIDS). Fast-track: ending the AIDS epidemic by 2030. 2014. Accessed 18 Apr 2019.
  17. 17.
    Centers for Disease Control (CDC). HIV among people who inject drugs. Published 2019. Updated March 15, 2019. Accessed 18 Apr 2019.
  18. 18.
    Escudero DJ, Lurie MN, Mayer KH, et al. The risk of HIV transmission at each step of the HIV care continuum among people who inject drugs: a modeling study. BMC Public Health. 2017;17(1):614.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Metsch L, Philbin MM, Parish C, Shiu K, Frimpong JA, Giangle M. HIV testing, care, and treatment among women who use drugs from a global perspective: progress and challenges. J Acquir Immune Defic Syndr. 2015;69(Suppl 2):S162–8.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Miller WC, Hoffman IF, Hanscom BS, et al. A scalable, integrated intervention to engage people who inject drugs in HIV care and medication-assisted treatment (HPTN 074): a randomised, controlled phase 3 feasibility and efficacy study. Lancet (London, England). 2018;392(10149):747–59.CrossRefGoogle Scholar
  21. 21.
    Bachireddy C, Weisberg DF, Altice FL. Balancing access and safety in prescribing opioid agonist therapy to prevent HIV transmission. Addiction. 2015;110(12):1869–71.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Bruce RD, Govindasamy S, Sylla L, Haddad MS, Kamarulzaman A, Altice FL. Case series of buprenorphine injectors in Kuala Lumpur, Malaysia. Am J Drug Alcohol Abuse. 2008;34(4):511–7.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Degenhardt LMB, Wirtz AL, Wolfe D, Kamarulzaman A, Carrieri MP, Strathdee SAM-SK, Kazatchkine M, Beyrer C. What has been achieved in HIV prevention, treatment and care for people who inject drugs, 2010–2012? A review of the six highest burden countries. Int J Drug Policy. 2014;25(1):8.CrossRefGoogle Scholar
  24. 24.
    Larney S, Peacock A, Leung J, et al. Global, regional, and country-level coverage of interventions to prevent and manage HIV and hepatitis C among people who inject drugs: a systematic review. Lancet Glob Health. 2017;5(12):e1208–20.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Smith MK, Graham M, Latkin CA, Go VL. Using contact patterns to inform HIV interventions in persons who inject drugs in Northern Vietnam. J Acquir Immune Defic Syndr. 2018;78(1):1–8.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Tempalski B, Cooper HLF, Kelley ME, et al. Identifying which place characteristics are associated with the odds of recent HIV testing in a large sample of people who inject drugs in 19 US metropolitan areas. AIDS Behav. 2019;23(2):318–35.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Smith DK, Van Handel M, Grey J. Estimates of adults with indications for HIV pre-exposure prophylaxis by jurisdiction, transmission risk group, and race/ethnicity, United States, 2015. Ann Epidemiol. 2018;28:850–857.e9.PubMedCrossRefGoogle Scholar
  28. 28.
    Roth A, Tran N, Piecara B, Welles S, Shinefeld J, Brady K. Factors associated with awareness of pre-exposure prophylaxis for HIV among persons who inject drugs in Philadelphia: national HIV behavioral surveillance, 2015. AIDS Behav. 2019;23(7):1833–40.PubMedCrossRefGoogle Scholar
  29. 29.
    Bednasz CJ, Venuto CS, Ma Q, Morse GD. Pharmacokinetic considerations for combining antiretroviral therapy, direct-acting antiviral agents for hepatitis C virus, and addiction treatment medications. Clin Pharmacol Drug Dev. 2017;6(2):135–9.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Clarke TK, Crist RC, Ang A, et al. Genetic variation in OPRD1 and the response to treatment for opioid dependence with buprenorphine in European-American females. Pharmacogenomics J. 2014;14(3):303–8.PubMedCrossRefGoogle Scholar
  31. 31.
    Nasarruddin AM, Saifi RA, Othman S, Kamarulzaman A. Opening up the HIV epidemic: a review of HIV seropositive status disclosure among people who inject drugs. AIDS Care. 2017;29(5):533–40.PubMedCrossRefGoogle Scholar
  32. 32.
    Thomson N, Moore T, Crofts N. Assessing the impact of harm reduction programs on law enforcement in Southeast Asia: a description of a regional research methodology. Harm Reduct J. 2012;9:23.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Altice FL, Azbel L, Stone J, et al. The perfect storm: incarceration and the high-risk environment perpetuating transmission of HIV, hepatitis C virus, and tuberculosis in Eastern Europe and Central Asia. Lancet (London, England). 2016;388(10050):1228–48.CrossRefGoogle Scholar
  34. 34.
    Muessig KE, Nekkanti M, Bauermeister J, Bull S, Hightow-Weidman LB. A systematic review of recent smartphone, Internet and Web 2.0 interventions to address the HIV continuum of care. Curr HIV/AIDS Rep. 2015;12(1):173–90.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Guse K, Levine D, Martins S, et al. Interventions using new digital media to improve adolescent sexual health: a systematic review. J Adolesc Health. 2012;51(6):535–43.PubMedCrossRefGoogle Scholar
  36. 36.
    International Telecommunication Union (ITU). ICT facts and figures 2017. 2017. Accessed 19 Apr 2019.
  37. 37.
    Taggart T, Grewe ME, Conserve DF, Gliwa C, Roman Isler M. Social media and HIV: a systematic review of uses of social media in HIV communication. J Med Internet Res. 2015;17(11):e248.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Latkin CA, Davey-Rothwell MA, Knowlton AR, Alexander KA, Williams CT, Boodram B. Social network approaches to recruitment, HIV prevention, medical care, and medication adherence. J Acquir Immune Defic Syndr (1999). 2013;63(Suppl 1):S54–8.CrossRefGoogle Scholar
  39. 39.
    Bull SS, Levine DK, Black SR, Schmiege SJ, Santelli J. Social media-delivered sexual health intervention: a cluster randomized controlled trial. Am J Prev Med. 2012;43(5):467–74.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Lelutiu-Weinberger C, Pachankis JE, Gamarel KE, Surace A, Golub SA, Parsons JT. Feasibility, acceptability, and preliminary efficacy of a live-chat social media intervention to reduce HIV risk among Young men who have sex with men. AIDS Behav. 2015;19(7):1214–27.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Tso LS, Tang W, Li H, Yan HY, Tucker JD. Social media interventions to prevent HIV: a review of interventions and methodological considerations. Curr Opin Psychol. 2016;9:6–10.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Jaganath D, Gill HK, Cohen AC, Young SD. Harnessing Online Peer Education (HOPE): integrating C-POL and social media to train peer leaders in HIV prevention. AIDS Care. 2012;24(5):593–600.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Brenner BG, Ibanescu RI, Hardy I, Roger M. Genotypic and phylogenetic insights on prevention of the spread of HIV-1 and drug resistance in “real-world” settings. Viruses. 2017;10(1):10.PubMedCentralCrossRefGoogle Scholar
  44. 44.
    Bisaso KR, Anguzu GT, Karungi SA, Kiragga A, Castelnuovo B. A survey of machine learning applications in HIV clinical research and care. Comput Biol Med. 2017;91:366–71.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Singh Y, Mars NNM. Applying machine learning to predict patient-specific current CD 4 cell count in order to determine the progression of human immunodeficiency virus (HIV) infection. Afr J Biotechnol. 2013;12(23):11.Google Scholar
  46. 46.
    Larder B, Wang D, Revell A. Application of artificial neural networks for decision support in medicine. Methods Mol Biol (Clifton, NJ). 2008;458:123–36.Google Scholar
  47. 47.
    Li Y, Rapkin B. Classification and regression tree uncovered hierarchy of psychosocial determinants underlying quality-of-life response shift in HIV/AIDS. J Clin Epidemiol. 2009;62(11):1138–47.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Munoz-Moreno JA, Perez-Alvarez N, Munoz-Murillo A, et al. Classification models for neurocognitive impairment in HIV infection based on demographic and clinical variables. PLoS One. 2014;9(9):e107625.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Choi I, Chung AW, Suscovich TJ, et al. Machine learning methods enable predictive modeling of antibody feature:function relationships in RV144 vaccinees. PLoS Comput Biol. 2015;11(4):e1004185.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Pan Y, Liu H, Metsch LR, Feaster DJ. Factors associated with HIV testing among participants from substance use disorder treatment programs in the US: a machine learning approach. AIDS Behav. 2017;21(2):534–46.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Isabelle Guyon AE. An introduction to variable and feature selection. Mach Learn Res. 2003;3:25.Google Scholar
  52. 52.
    Muessig KE, Knudtson KA, Soni K, et al. “I didn’t tell you sooner because I didn’t know how to handle it myself”: developing a virtual reality program to support HIV-status disclosure decisions. Digit Cult Educ. 2018;10:22–48.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Oliveira A, Faria BM, Gaio AR, Reis LP. Data mining in HIV-AIDS surveillance system: application to Portuguese data. J Med Syst. 2017;41(4):51.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Charurut Somboonwit
    • 1
    Email author
  • Lianet Vazquez
    • 2
  • Lynette J. Menezes
    • 1
  1. 1.Division of Infectious Disease & International Medicine, Department of Internal MedicineMorsani College of Medicine, University of South FloridaTampaUSA
  2. 2.Harvard Medical SchoolBostonUSA

Personalised recommendations