Eliminating Cervical Cancer: A Role for Artificial Intelligence

  • Lynette J. MenezesEmail author
  • Lianet Vazquez
  • Chilukuri K. Mohan
  • Charurut Somboonwit


Cervical cancer caused by infection with the human papillomavirus (HPV), is the leading cause of mortality among women in many low-resource countries and the fourth leading cause of mortality globally. Decades of cervical cytology screening with subsequent treatment have resulted in marked declines in incidence and mortality of cervical cancer in developed regions, but resource-deprived regions lag behind because of suboptimal access to screening and treatment. Artificial intelligence (AI) technologies are showing promising results in early detection and prediction of cervical cancer progression with potential for future integration into screening and treatment modalities. This chapter begins with an overview of HPV infection, examines HPV pathogenesis and cervical cancer epidemiology; discusses the effectiveness of current primary and secondary prevention strategies and explores the potential role of AI technologies in improving cervical screening, diagnosis and treatment with the goal of eliminating cervical cancer.


Cervical cancer Human papillomavirus HPV Cervical screening HPV testing HPV vaccination Artificial intelligence Artificial neural networks Pap test Machine learning 




Potential Conflicts of Interest

The authors have no potential conflicts of interest to report.


  1. 1.
    Ferlay J, Colombet M, Soerjomataram I, et al. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int J Cancer. 2019;144(8):1941–53.PubMedCrossRefGoogle Scholar
  2. 2.
    Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.CrossRefGoogle Scholar
  3. 3.
    Walboomers JM, Jacobs MV, Manos MM, et al. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol. 1999;189(1):12–9.PubMedCrossRefGoogle Scholar
  4. 4.
    Chesson HW, Dunne EF, Hariri S, Markowitz LE. The estimated lifetime probability of acquiring human papillomavirus in the United States. Sex Transm Dis. 2014;41(11):660–4.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    de Martel C, Ferlay J, Franceschi S, et al. Global burden of cancers attributable to infections in 2008: a review and synthetic analysis. Lancet Oncol. 2012;13(6):607–15.PubMedCrossRefGoogle Scholar
  6. 6.
    Chaturvedi AK, Engels EA, Pfeiffer RM, et al. Human papillomavirus and rising oropharyngeal cancer incidence in the United States. J Clin Oncol. 2011;29(32):4294–301.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    International Agency for Research on Cancer (IARC). Human papillomaviruses. In: IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, editor. Biological agents. Volume 100 B. A review of human carcinogens. Lyon: IARC; 2012. p. 255–313.Google Scholar
  8. 8.
    Clifford GM, Smith JS, Plummer M, Munoz N, Franceschi S. Human papillomavirus types in invasive cervical cancer worldwide: a meta-analysis. Br J Cancer. 2003;88(1):63–73.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Smith JS, Lindsay L, Hoots B, et al. Human papillomavirus type distribution in invasive cervical cancer and high-grade cervical lesions: a meta-analysis update. Int J Cancer. 2007;121(3):621–32.PubMedCrossRefGoogle Scholar
  10. 10.
    Vinokurova S, Wentzensen N, Kraus I, et al. Type-dependent integration frequency of human papillomavirus genomes in cervical lesions. Cancer Res. 2008;68(1):307–13.PubMedCrossRefGoogle Scholar
  11. 11.
    Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):E359–86.CrossRefGoogle Scholar
  12. 12.
    World Health Organization (WHO). Human papillomavirus (HPV) and cervical cancer. WHO. Fact sheets Web site. Published 2019. Updated January 24, 2019. Accessed 24 Mar 2019.
  13. 13.
    Rodriguez AC, Schiffman M, Herrero R, et al. Longitudinal study of human papillomavirus persistence and cervical intraepithelial neoplasia grade 2/3: critical role of duration of infection. J Natl Cancer Inst. 2010;102(5):315–24.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Winer RL, Kiviat NB, Hughes JP, et al. Development and duration of human papillomavirus lesions, after initial infection. J Infect Dis. 2005;191(5):731–8.PubMedCrossRefGoogle Scholar
  15. 15.
    Winer RL, Hughes JP, Feng Q, et al. Early natural history of incident, type-specific human papillomavirus infections in newly sexually active young women. Cancer Epidemiol Biomark Prev. 2011;20(4):699–707.CrossRefGoogle Scholar
  16. 16.
    Moscicki AB, Shiboski S, Hills NK, et al. Regression of low-grade squamous intra-epithelial lesions in young women. Lancet. 2004;364(9446):1678–83.PubMedCrossRefGoogle Scholar
  17. 17.
    De Vuyst H, Lillo F, Broutet N, Smith JS. HIV, human papillomavirus, and cervical neoplasia and cancer in the era of highly active antiretroviral therapy. Eur J Cancer Prev. 2008;17(6):545–54.PubMedCrossRefGoogle Scholar
  18. 18.
    Clifford GM, Goncalves MA, Franceschi S. Human papillomavirus types among women infected with HIV: a meta-analysis. AIDS. 2006;20(18):2337–44.PubMedCrossRefGoogle Scholar
  19. 19.
    Hawes SE, Critchlow CW, Sow PS, et al. Incident high-grade squamous intraepithelial lesions in Senegalese women with and without human immunodeficiency virus type 1 (HIV-1) and HIV-2. J Natl Cancer Inst. 2006;98(2):100–9.PubMedCrossRefGoogle Scholar
  20. 20.
    Menezes LJ, Poongulali S, Tommasino M, et al. Prevalence and concordance of human papillomavirus infection at multiple anatomic sites among HIV-infected women from Chennai, India. Int J STD AIDS. 2016;27(7):543–53.PubMedCrossRefGoogle Scholar
  21. 21.
    Hagensee ME, Cameron JE, Leigh JE, Clark RA. Human papillomavirus infection and disease in HIV-infected individuals. Am J Med Sci. 2004;328(1):57–63.PubMedCrossRefGoogle Scholar
  22. 22.
    Gichangi PB, Bwayo J, Estambale B, et al. Impact of HIV infection on invasive cervical cancer in Kenyan women. AIDS. 2003;17(13):1963–8.PubMedCrossRefGoogle Scholar
  23. 23.
    Huchko MJ, Leslie H, Maloba M, Zakaras J, Bukusi E, Cohen CR. Outcomes up to 12 months after treatment with loop electrosurgical excision procedure for cervical intraepithelial neoplasia among HIV-infected women. J Acquir Immune Defic Syndr. 2015;69(2):200–5.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Centers for Disease Control and Prevention. AIDS-defining conditions. MMWR Morb Mortal Wkly Rep. 2008;57(RR-10):9.Google Scholar
  25. 25.
    Denny L. The prevention of cervical cancer in developing countries. BJOG. 2005;112(9):1204–12.PubMedCrossRefGoogle Scholar
  26. 26.
    Wright TC, Kuhn L. Alternative approaches to cervical cancer screening for developing countries. Best Pract Res Clin Obstet Gynaecol. 2012;26(2):197–208.PubMedCrossRefGoogle Scholar
  27. 27.
    Denny L. Prevention of cervical cancer. Reprod Health Matters. 2008;16(32):18–31.PubMedCrossRefGoogle Scholar
  28. 28.
    Fokom Domgue J, Schiffman M, Wentzensen NH, et al. Assessment of a new lower-cost real-time PCR assay for detection of high-risk human papillomavirus: useful for cervical screening in limited-resource settings? J Clin Microbiol. 2017;55(8):2348–55.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    World Health Organization (WHO). WHO guidelines for screening and treatment of precancerous lesions for cervical cancer prevention. 2013. Accessed 15 Apr 2019.
  30. 30.
    Curry SJ, Krist AH, Owens DK, et al. Screening for cervical cancer: US preventive services task force recommendation statement. JAMA. 2018;320(7):674–86.PubMedCrossRefGoogle Scholar
  31. 31.
    Saslow D, Solomon D, Lawson HW, et al. American Cancer Society, American Society for Colposcopy and Cervical Pathology, and American Society for Clinical Pathology screening guidelines for the prevention and early detection of cervical cancer. Am J Clin Pathol. 2012;137(4):516–42.PubMedCrossRefGoogle Scholar
  32. 32.
    The American College of Obstetricians and Gynecologists. Practice bulletin no. 168: cervical cancer screening and prevention. Obstet Gynecol. 2016;128(4):e111–30.CrossRefGoogle Scholar
  33. 33.
    Sankaranarayanan R, Nessa A, Esmy PO, Dangou J-M. Visual inspection methods for cervical cancer prevention. Best Pract Res Clin Obstet Gynaecol. 2012;26(2):221–32.PubMedCrossRefGoogle Scholar
  34. 34.
    Bateman AC, Parham GP, Sahasrabuddhe VV, et al. Clinical performance of digital cervicography and cytology for cervical cancer screening in HIV-infected women in Lusaka, Zambia. J Acquir Immune Defic Syndr. 2014;67(2):212–5.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Firnhaber C, Mao L, Levin S, et al. Evaluation of a cervicography-based program to ensure quality of visual inspection of the cervix in HIV-infected women in Johannesburg, South Africa. J Low Genit Tract Dis. 2015;19:1.CrossRefGoogle Scholar
  36. 36.
    Sankaranarayanan R, Nene BM, Shastri SS, et al. HPV screening for cervical cancer in rural India. N Engl J Med. 2009;360(14):1385–94.PubMedCrossRefGoogle Scholar
  37. 37.
    Flores YN, Bishai DM, Lorincz A, et al. HPV testing for cervical cancer screening appears more cost-effective than Papanicolau cytology in Mexico. Cancer Causes Control. 2011;22(2):261–72.PubMedCrossRefGoogle Scholar
  38. 38.
    Arbyn M, Ronco G, Anttila A, et al. Evidence regarding human papillomavirus testing in secondary prevention of cervical cancer. Vaccine. 2012;30(Supplement 5):F88–99.PubMedCrossRefGoogle Scholar
  39. 39.
    Huh WK, Ault KA, Chelmow D, et al. Use of primary high-risk human papillomavirus testing for cervical cancer screening: interim clinical guidance. Obstet Gynecol. 2015;125(2):330–7.PubMedCrossRefGoogle Scholar
  40. 40.
    Demarco M, Carter-Pokras O, Hyun N, et al. Validation of a Human Papillomavirus (HPV) DNA cervical screening test that provides expanded HPV typing. J Clin Microbiol. 2018;56(5):e01910–7.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Torres KL, Marino JM, Pires Rocha DA, et al. Self-sampling coupled to the detection of HPV 16 and 18 E6 protein: a promising option for detection of cervical malignancies in remote areas. PLoS One. 2018;13(7):e0201262.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Cuzick J, Cadman L, Ahmad AS, et al. Performance and diagnostic accuracy of a urine-based human papillomavirus assay in a referral population. Cancer Epidemiol Biomark Prev. 2017;26(7):1053–9.CrossRefGoogle Scholar
  43. 43.
    Campos NG, Jeronimo J, Tsu V, Castle PE, Mvundura M, Kim JJ. The cost-effectiveness of visual triage of human papillomavirus-positive women in three low- and middle-income countries. Cancer Epidemiol Biomark Prev. 2017;26(10):1500–10.CrossRefGoogle Scholar
  44. 44.
    Campos NG, Lince-Deroche N, Chibwesha CJ, et al. Cost-effectiveness of cervical cancer screening in women living with HIV in South Africa: a mathematical modeling study. J Acquir Immune Defic Syndr. 2018;79(2):195–205.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Cuschieri K, Geraets D, Cuzick J, et al. Performance of a cartridge-based assay for detection of clinically significant Human Papillomavirus (HPV) infection: lessons from VALGENT (Validation of HPV Genotyping Tests). J Clin Microbiol. 2016;54(9):2337–42.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Qiao YL, Sellors JW, Eder PS, et al. A new HPV-DNA test for cervical-cancer screening in developing regions: a cross-sectional study of clinical accuracy in rural China. Lancet Oncol. 2008;9(10):929–36.PubMedCrossRefGoogle Scholar
  47. 47.
    Vasiljevic N, Carter PD, Reuter C, et al. Role of quantitative p16(INK4A) mRNA assay and digital reading of p16(INK4A) immunostained sections in diagnosis of cervical intraepithelial neoplasia. Int J Cancer. 2017;141(4):829–36.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    van Zummeren M, Leeman A, Kremer WW, et al. Three-tiered score for Ki-67 and p16(ink4a) improves accuracy and reproducibility of grading CIN lesions. J Clin Pathol. 2018;71(11):981–8.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Cook DA, Krajden M, Brentnall AR, et al. Evaluation of a validated methylation triage signature for human papillomavirus positive women in the HPV FOCAL cervical cancer screening trial. Int J Cancer. 2019;144(10):2587–95.PubMedCrossRefGoogle Scholar
  50. 50.
    Brentnall AR, Vasiljevic N, Scibior-Bentkowska D, et al. HPV33 DNA methylation measurement improves cervical pre-cancer risk estimation of an HPV16, HPV18, HPV31 and \textit{EPB41L3} methylation classifier. Cancer Biomark. 2015;15(5):669–75.PubMedCrossRefGoogle Scholar
  51. 51.
    Ahrlund-Richter A, Cheng L, Hu YOO, et al. Changes in cervical Human Papillomavirus (HPV) prevalence at a youth clinic in Stockholm, Sweden, a decade after the introduction of the HPV vaccine. Front Cell Infect Microbiol. 2019;9:59.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Wright TC Jr, Parvu V, Stoler MH, et al. HPV infections and cytologic abnormalities in vaccinated women 21–34 years of age: results from the baseline phase of the Onclarity trial. Gynecol Oncol. 2019;153(2):259–65.PubMedCrossRefGoogle Scholar
  53. 53.
    Brotherton JML, Bloem PN. Population-based HPV vaccination programmes are safe and effective: 2017 update and the impetus for achieving better global coverage. Best Pract Res Clin Obstet Gynaecol. 2018;47:42–58.PubMedCrossRefGoogle Scholar
  54. 54.
    Meites E, Kempe A, Markowitz LE. Use of a 2-dose schedule for human papillomavirus vaccination – updated recommendations of the advisory committee on immunization practices. MMWR Morb Mortal Wkly Rep. 2016;65(49):1405–8.PubMedCrossRefGoogle Scholar
  55. 55.
    Spinner C, Ding L, Bernstein DI, et al. Human papillomavirus vaccine effectiveness and herd protection in young women. Pediatrics. 2019;143(2) Scholar
  56. 56.
    McClung NM, Gargano JW, Park IU, et al. Estimated number of cases of high-grade cervical lesions diagnosed among women – United States, 2008 and 2016. MMWR Morb Mortal Wkly Rep. 2019;68(15):337–43.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Patel C, Brotherton JM, Pillsbury A, et al. The impact of 10 years of human papillomavirus (HPV) vaccination in Australia: what additional disease burden will a nonavalent vaccine prevent? Euro Surveill. 2018;23:41.CrossRefGoogle Scholar
  58. 58.
    Palmer T, Wallace L, Pollock KG, et al. Prevalence of cervical disease at age 20 after immunisation with bivalent HPV vaccine at age 12–13 in Scotland: retrospective population study. BMJ. 2019;365:l1161.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Simms KT, Steinberg J, Caruana M, et al. Impact of scaled up human papillomavirus vaccination and cervical screening and the potential for global elimination of cervical cancer in 181 countries, 2020–99: a modelling study. Lancet Oncol. 2019;20(3):394–407.PubMedCrossRefGoogle Scholar
  60. 60.
    Franco M, Mazzucca S, Padek M, Brownson RC. Going beyond the individual: how state-level characteristics relate to HPV vaccine rates in the United States. BMC Public Health. 2019;19(1):246.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Pierce Campbell CM, Menezes LJ, Paskett ED, Giuliano AR. Prevention of invasive cervical cancer in the United States: past, present, and future. Cancer Epidemiol Biomark Prev. 2012;21(9):1402–8.CrossRefGoogle Scholar
  62. 62.
    Gallagher KE, LaMontagne DS, Watson-Jones D. Status of HPV vaccine introduction and barriers to country uptake. Vaccine. 2018;36(32 Pt A):4761–7.PubMedCrossRefGoogle Scholar
  63. 63.
    International Papillomavirus Society. IPVS Statement: Moving towards Elimination of Cervical Cancer as a Public Health Problem. Published 2018. Updated February 2018. Accessed 24 Apr 2019.
  64. 64.
    Buchanan BG, Shortliffe EH. Rule based expert systems: the mycin experiments of the stanford heuristic programming project (the Addison-Wesley series in artificial intelligence). Reading, MA: Addison-Wesley Longman Publishing Co., Inc.; 1984.Google Scholar
  65. 65.
    Firlej M, Hellens D. Knowledge elicitation: a practical handbook. Englewood Cliffs, NJ: Prentice-Hall; 1991.Google Scholar
  66. 66.
    Kolodner J. Case-based reasoning. Sanfranciso, CA: Morgan Kaufmann Publishers Inc.; 1993.Google Scholar
  67. 67.
    Bishop CM. Pattern recognition and machine learning (information science and statistics). New York, NY: Springer; 2006.Google Scholar
  68. 68.
    Smith C. Decision trees and random forests: a visual introduction for beginners. Blue Windmill Media; 2017.Google Scholar
  69. 69.
    Mehrotra K, Mohan CK, Ranka S. Elements of artificial neural networks. Cambridge, MA: MIT Press; 1997.Google Scholar
  70. 70.
    Aggarwal CC. Neural networks and deep learning. New York, NY: Springer; 2018.CrossRefGoogle Scholar
  71. 71.
    William W, Ware A, Basaza-Ejiri AH, Obungoloch J. A review of image analysis and machine learning techniques for automated cervical cancer screening from pap-smear images. Comput Methods Programs Biomed. 2018;164:15–22.PubMedCrossRefGoogle Scholar
  72. 72.
    Bora K, Chowdhury M, Mahanta LB, Kundu MK, Das AK. Automated classification of Pap smear images to detect cervical dysplasia. Comput Methods Programs Biomed. 2017;138:31–47.PubMedCrossRefGoogle Scholar
  73. 73.
    Wagholikar KB, MacLaughlin KL, Henry MR, et al. Clinical decision support with automated text processing for cervical cancer screening. J Am Med Inform Assoc. 2012;19(5):833–9.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Weegar R, Kvist M, Sundstrom K, Brunak S, Dalianis H. Finding cervical cancer symptoms in swedish clinical text using a machine learning approach and NegEx. AMIA Annu Symp Proc. 2015;2015:1296–305.PubMedPubMedCentralGoogle Scholar
  75. 75.
    Kyrgiou M, Pouliakis A, Panayiotides JG, et al. Personalised management of women with cervical abnormalities using a clinical decision support scoring system. Gynecol Oncol. 2016;141(1):29–35.PubMedCrossRefGoogle Scholar
  76. 76.
    Baltzer N, Sundstrom K, Nygard JF, Dillner J, Komorowski J. Risk stratification in cervical cancer screening by complete screening history: applying bioinformatics to a general screening population. Int J Cancer. 2017;141(1):200–9.PubMedCrossRefGoogle Scholar
  77. 77.
    Wang J, Li L, Yang P, et al. Identification of cervical cancer using laser-induced breakdown spectroscopy coupled with principal component analysis and support vector machine. Lasers Med Sci. 2018;33(6):1381–6.PubMedCrossRefGoogle Scholar
  78. 78.
    Long NP, Jung KH, Yoon SJ, et al. Systematic assessment of cervical cancer initiation and progression uncovers genetic panels for deep learning-based early diagnosis and proposes novel diagnostic and prognostic biomarkers. Oncotarget. 2017;8(65):109436–56.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Mu W, Chen Z, Liang Y, et al. Staging of cervical cancer based on tumor heterogeneity characterized by texture features on (18)F-FDG PET images. Phys Med Biol. 2015;60(13):5123–39.PubMedCrossRefGoogle Scholar
  80. 80.
    Torheim T, Malinen E, Hole KH, et al. Autodelineation of cervical cancers using multiparametric magnetic resonance imaging and machine learning. Acta Oncol. 2017;56(6):806–12.PubMedCrossRefGoogle Scholar
  81. 81.
    Song D, Kim E, Huang X, et al. Multimodal entity coreference for cervical dysplasia diagnosis. IEEE Trans Med Imaging. 2015;34(1):229–45.PubMedCrossRefGoogle Scholar
  82. 82.
    Hu L, Bell D, Antani S, et al. An observational study of deep learning and automated evaluation of cervical images for cancer screening. J Natl Cancer Inst. 2019; Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Lynette J. Menezes
    • 1
    Email author
  • Lianet Vazquez
    • 2
  • Chilukuri K. Mohan
    • 3
  • Charurut Somboonwit
    • 1
  1. 1.Division of Infectious Disease & International Medicine, Department of Internal MedicineMorsani College of Medicine, University of South FloridaTampaUSA
  2. 2.Harvard Medical SchoolBostonUSA
  3. 3.Department of Electrical Engineering & Computer ScienceCenter for Science and Technology, Syracuse UniversitySyracuseUSA

Personalised recommendations