Advertisement

Approximation by Cubic Mappings

  • Paşc Găvruţa
  • Laura Manolescu
Chapter

Abstract

Starting with a stability problem posed by Ulam for group homomorphisms, we characterize the functions with values in a Banach space, which can be approximated by cubic mappings with a given error.

Keywords

Hyers-Ulam-Rassias stability Cubic mapping 

Mathematics Subject Classification (2010)

Primary 39B82; Secondary 39B52 

References

  1. 1.
    Borelli, C., Forti, G.L.: On a general Hyers-Ulam stability result. Int. J. Math. Math. Sci. 18, 229–236 (1995)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Brzdek, J.: Note on stability of the Cauchy equation-an answer to a problem of Th.M. Rassias. Carphtian J. Math. 30(1), 47–54 (2004)Google Scholar
  3. 3.
    Brzdek, J., Popa, D., Raşa, I., Xu, B.: Ulam Stability of Opeartors. Academic Press, New York (2018)zbMATHGoogle Scholar
  4. 4.
    Brzdek, J., Karapinar, E., Petruşel, A.: A fixed point theorem and the Ulam stability in generalized dq-metric spaces. J. Math. Anal. Appl. 467, 501–520 (2018)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Cădariu, L., Radu, V.: Fixed points in generalized metric spaces and the stability of a cubic functional equation. In: Fixed Point Theory and Applications, vol. 7, pp. 53–68. Nova Science Publishers, New York (2007)Google Scholar
  6. 6.
    Cholewa, P.W.: Remarks on the stability of functional equations. Aequationes Math. 27, 76–86 (1984)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Czerwik, S.: Stability of Functional Equations of Ulam-Hyers-Rassias Type. Hadronic Press, Palm Harbor (2003)zbMATHGoogle Scholar
  8. 8.
    Eskandani, G.Z., Rassias, J.M., Găvruţa, P.: Generalized Hyers-Ulam stability for a general cubic functional equation in quasi-β-normed spaces. Asian Eur. J. Math. 4(3), 413–425 (2011)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Găvruţa, P.: A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings. J. Math. Anal. Appl. 184, 431–436 (1994)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Găvruţa, P.: An answer to a question of Th.M. Rassias and J. Tabor on mixed stability of mappings. Bul. Stiint. Univ. Politeh. Timis. Ser. Mat. Fiz. 42(56), 1–6 (1997)Google Scholar
  11. 11.
    Găvruţa, P.: On the Hyers-Ulam-Rassias stability of mappings. In: Milovanovic, G.V. (ed.) Recent Progress in Inequalities, pp. 465–469. Kluwer, Dordrecht (1998)CrossRefGoogle Scholar
  12. 12.
    Găvruţa, P.: An answer to a question of John M. Rassias concerning the stability of Cauchy equation. In: Advances in Equations and Inequalities. Hadronic Mathematics Series, pp. 67–71. Hadronic Press, Palm Harbor (1999)Google Scholar
  13. 13.
    Găvruţa, P.: On a problem of G. Isac and Th.M. Rassias concerning the stability of mappings. J. Math. Anal. Appl. 261, 543–553 (2001)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Găvruţa, P.: On the Hyers-Ulam-Rassias stability of the quadratic mappings. Nonlinear Funct. Anal. Appl. 9(3), 415–428 (2004)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Găvruţa, P., Cădariu, L.: General stability of the cubic functional equation. Bul. Ştiinţ. Univ. Politehnica Timişoara Ser. Mat.-Fiz. 47(61)(1), 59–70 (2002)Google Scholar
  16. 16.
    Găvruţa, P., Cădariu, L.: The generalized stability of a quadratic functional equation. Nonlinear Funct. Anal. Appl. 9(4), 513–526 (2004)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Găvruţa, P., Găvruţa, L.: Ψ-additive mappings and Hyers-Ulam stability. In: Pardalos, P.M., Rassias, Th.M., Khan, A.A. (eds.) Nonlinear Analysis and Variational Problems, pp. 81–86. Springer, New York (2010)CrossRefGoogle Scholar
  18. 18.
    Găvruţa, L., Găvruţa, P.: On a problem of John M. Rassias concerning the stability in Ulam sense of Euler-Lagrange equation. In: Rassias, J.M. (ed.) Functionl Equation, Difference Inequalities and Ulam Stability Notions, pp. 47–53. Nova Science Publishers, New York (2010)zbMATHGoogle Scholar
  19. 19.
    Găvruţa, L., Găvruţa, P.: Ulam stability problem for frames, Chap.11. In: Rassias, Th.M., Brzdȩk, J. (eds.) Functional Equations in Mathematical Analysis. Springer Optimization and Its Applications, pp. 139–152. Springer, New York (2012)CrossRefGoogle Scholar
  20. 20.
    Găvruţa, L., Găvruţa, P.: Approximation of functions by additive and by quadratic mappings. In: Rassias, Th.M., Gupta, V. (eds.) Mathematical Analysis, Approximation Theory and Their Applications. Springer Optimization and Its Applications, vol. 111, pp. 281–292. Springer, Cham (2016)CrossRefGoogle Scholar
  21. 21.
    Găvruţa, P., Hossu, M., Popescu, D., Căprău, C.: On the stability of mappings and an answer to a problem of Th. M. Rassias. Ann. Math. Blaise Pascal 2(2), 55–60 (1995)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Hyers, D.H.: On the stability of the linear functional equation. Proc. Nat. Acad. Soc. U. S. A. 27, 222–224 (1941)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Hyers, D.H., Isac, G., Rassias, T.H.: Stability of Functional Equations in Several Variables. Birkhäuser, Basel (1998)CrossRefGoogle Scholar
  24. 24.
    Isac, G., Rassias, Th.M.: On the Hyers-Ulam stability of ψ-additive mappings. J. Approx. Theory 72, 131–137 (1993)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Jun, K.-W., Kim, H.-M.: The generalized Hyers-Ulam-Rassias stability of a cubic functional equation. J. Math. Anal. Appl. 274, 867–878 (2002)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Jun, K.-W., Lee, Y.-H.: On the stability of a cubic functional equation. J. Chungcheong Math. Soc. 21(3), 377–384 (2008)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Jung, S.-M.: Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis. Springer, New York (2011)CrossRefGoogle Scholar
  28. 28.
    Jung, S.-M., Rassias, M.Th.: A linear functional equation of third order associated to the Fibonacci numbers. Abstr. Appl. Anal. 2014, 7 pp. (2014). Article ID 137468Google Scholar
  29. 29.
    Jung, S.-M., Popa, D., Rassias, M.Th.: On the stability of the linear functional equation in a single variable on complete metric groups. J. Glob. Optim. 59, 165–171 (2014)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Lee, Y.-H., Jung, S.-M., Rassias, M.Th.: On an n-dimensional mixed type additive and quadratic functional equation. Appl. Math. Comput. 228, 13–16 (2014)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Mirmostafaee, A.K., Moslehian, M.S.: Fuzzy approximately cubic mappins. Inf. Sci. 178(19), 3791–3798 (2008)CrossRefGoogle Scholar
  32. 32.
    Mortici, C., Rassias, Th.M., Jung, S.-M.: On the stability of a functional equation associated with the Fibbonacci numbers. Abstr. Appl. Anal. 2014, 6 pp. (2014). Article ID 546046Google Scholar
  33. 33.
    Najati, A., Park, C.: On the stability of a cubic functional equation. Acta Math. Sin. 24(12), 1953–1964 (2008)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Rassias, Th.M: On the stability of the linear mapping in Banach spaces. Proc. Am. Math. Soc. 72, 297–300 (1978)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Rassias, J.M.: Solution of the stability problem for cubic mappings. Glasnik Matematicki 36(56), 73–84 (2001)MathSciNetGoogle Scholar
  36. 36.
    Saadati, R., Vaezpour, S.M., Park, C.: The stability of the cubic functional equations in various spaces. Math. Commun. 16, 131–145 (2011)MathSciNetzbMATHGoogle Scholar
  37. 37.
    Skof, F.: Proprietá locali e approssimazione di operatori. Rend. Sem. Mat. Fis. Milani 53, 113–129 (1983)CrossRefGoogle Scholar
  38. 38.
    Ulam, S.M.: A Collection of Mathematical Problems. Interscience Publications, New York (1960)zbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Paşc Găvruţa
    • 1
  • Laura Manolescu
    • 1
  1. 1.Department of MathematicsPolitehnica University of TimişoaraTimişoaraRomania

Personalised recommendations