A Purely Fixed Point Approach to the Ulam-Hyers Stability and Hyperstability of a General Functional Equation

  • Chaimaa Benzarouala
  • Lahbib OubbiEmail author


In this paper, using a purely fixed point approach, we produce a new proof of the Ulam-Hyers stability and hyperstability of the general functional equation:
$$\displaystyle \sum _{i=1}^m A_i f(\sum _{j=1}^n a_{ij} x_j) + A = 0,\qquad (x_1, x_2, \dots , x_n) \in X^n, $$
considered in Bahyrycz and Olko (Aequationes Math 89:1461, 2015., and in Bahyrycz and Olko (Aequationes Math 90:527, 2016. Here m and n are positive integers, f is a mapping from a vector space X into a Banach space (Y, ∥ ∥), A ∈ Y  and, for every i ∈{1, 2, …, m} and j ∈{1, …, n}, Ai and aij are scalars.


Hyers-Ulam stability Hyperstability Functional equation Fixed point theorem 

Mathematics Subject Classification (2010)

Primary 39B82 47H14 47J20; Secondary 39B62 47H10 


  1. 1.
    Bahyrycz, A., Olko, J.: On stability of the general linear equation. Aequationes Math. 89, 1461–1474 (2015)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bahyrycz, A., Olko, J.: Hyperstability of general linear functional equation. Aequationes Math. 90, 527–540 (2016)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Brzdek, J., Chudziak, J., Páles, Z.: A fixed point approach to stability of functional equations. Nonlinear Anal. (74), 6728–6732 (2011)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Cădariu, L., Radu, V.: Fixed points and the stability of Jensen’s functional equation. J. Inequal. Pure Appl. Math. 4, Article 4 (2003)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Chu, H.Y., Kim, A., Yu, S.K.: On the stability of the generalized cubic set-valued functional equation. Appl. Math. Lett. 37, 7–14 (2014)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Czerwik, S.: On the stability of the quadratic mapping in normed spaces. Abh. Math. Semin. Univ. Hambg. 62, 59–64 (1992)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Dong, Z.: On Hyperstability of generalised linear functional equations in several variables. Bull. Aust. Math. Soc. 92, 259–267 (2015)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Hyers, D.H.: On the stability of the linear functional equation. Proc. Natl. Acad. Sci. U. S. A. 27, 222–224 (1941)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Jun, K.W., Kim, H.M., Rassais, T.M.: Extended Hyers-Ulam stability for Cauchy-Jensen mappings. J. Differ. Equ. Appl. 13, 1139–1153 (2007)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Moslehian, M.S.: Hyers-Ulam-Rassias stability of generalized derivations. Int. J. Math. Math. Sci. 2006, Article ID 93942, 8 (2006)Google Scholar
  11. 11.
    Oubbi, L.: Ulam-Hyers-Rassias stability problem for several kinds of mappings. Afr. Mat. 24, 525–542 (2013)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Patel, B.M., Patel, A.B.: Stability of Quartic functional equations in 2-Banach space. Int. J. Math. Anal. 7(23), 1097–1107 (2013)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Radu, V.: The fixed point alternative and the stability of functional equations. Fixed Point Theory 4(1), 91–96 (2003)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Rassias, T.M.: On the stability of the linear mapping in Banach spaces. Proc. Am. Math. Soc. 72, 297–300 (1978)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Ulam, S.M.: Problems in Modern Mathematics. Chapter VI, Science Editions. Wiley, New York (1960)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Mathematics, Team GrAAF, Laboratory LMSA, Center CeReMar, Faculty of SciencesMohammed V University in RabatRabatMorocco
  2. 2.Department of Mathematics, Team GrAAF, Laboratory LMSA, Center CeReMarEcole Normale Supérieure, Mohammed V University in RabatTakaddoum, RabatMorocco

Personalised recommendations