Understanding Patch-Based Learning of Video Data by Explaining Predictions
Abstract
Deep neural networks have shown to learn highly predictive models of video data. Due to the large number of images in individual videos, a common strategy for training is to repeatedly extract short clips with random offsets from the video. We apply the deep Taylor/Layer-wise Relevance Propagation (LRP) technique to understand classification decisions of a deep network trained with this strategy, and identify a tendency of the classifier to look mainly at the frames close to the temporal boundaries of its input clip. This “border effect” reveals the model’s relation to the step size used to extract consecutive video frames for its input, which we can then tune in order to improve the classifier’s accuracy without retraining the model. To our knowledge, this is the first work to apply the deep Taylor/LRP technique on any neural network operating on video data.
Keywords
Deep neural networks Video classification Human action recognition Explaining predictionsNotes
Acknowledgements
This work was supported by the German Ministry for Education and Research as Berlin Big Data Centre (01IS14013A), Berlin Center for Machine Learning (01IS18037I) and TraMeExCo (01IS18056A). Partial funding by DFG is acknowledged (EXC 2046/1, project-ID: 390685689). This work was also supported by the Institute for Information & Communications Technology Planning & Evaluation (IITP) grant funded by the Korea government (No. 2017-0-00451, No. 2017-0-01779).
References
- 1.Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.R., Samek, W.: On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PLoS ONE 10(7), e0130140 (2015)CrossRefGoogle Scholar
- 2.Baldi, P., Sadowski, P., Whiteson, D.: Searching for exotic particles in high-energy physics with deep learning. Nat. Commun. 5, 4308 (2014)CrossRefGoogle Scholar
- 3.Bosse, S., Maniry, D., Müller, K.R., Wiegand, T., Samek, W.: Deep neural networks for no-reference and full-reference image quality assessment. IEEE Trans. Image Process. 27(1), 206–219 (2018)MathSciNetCrossRefGoogle Scholar
- 4.Donahue, J., et al.: Long-term recurrent convolutional networks for visual recognition and description. In: IEEE CVPR, pp. 2625–2634 (2015)Google Scholar
- 5.Gevrey, M., Dimopoulos, I., Lek, S.: Review and comparison of methods to study the contribution of variables in artificial neural network models. Ecol. Model. 160(3), 249–264 (2003)CrossRefGoogle Scholar
- 6.Graves, A., Mohamed, A., Hinton, G.: Speech recognition with deep recurrent neural networks. In: IEEE ICASSP, pp. 6645–6649 (2013)Google Scholar
- 7.Hou, L., Samaras, D., Kurc, T.M., Gao, Y., Davis, J.E., Saltz, J.H.: Patch-based convolutional neural network for whole slide tissue image classification. In: IEEE CVPR, pp. 2424–2433 (2016)Google Scholar
- 8.Hu, K.T., Leou, J.J., Hsiao, H.H.: Spatiotemporal saliency detection and salient region determination for H.264 videos. JVCIR 24(7), 760–772 (2013)Google Scholar
- 9.Ji, S., Xu, W., Yang, M., Yu, K.: 3D convolutional neural networks for human action recognition. IEEE TPAMI 35(1), 221–231 (2013)CrossRefGoogle Scholar
- 10.Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., Fei-Fei, L.: Large-scale video classification with convolutional neural networks. In: IEEE CVPR, pp. 1725–1732 (2014)Google Scholar
- 11.Kauffmann, J., Esders, M., Montavon, G., Samek, W., Müller, K.R.,: From Clustering to Cluster Explanations via Neural Networks. arXiv preprint arXiv:1906.07633 (2019)
- 12.Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in NIPS, pp. 1097–1105 (2012)Google Scholar
- 13.Landecker, W., Thomure, M.D., Bettencourt, L.M., Mitchell, M., Kenyon, G.T., Brumby, S.P.: Interpreting individual classifications of hierarchical networks. In: IEEE Symposium CIDM, pp. 32–38 (2013)Google Scholar
- 14.Lapuschkin, S., Binder, A., Montavon, G., Müller, K.R., Samek, W.: The LRP toolbox for artificial neural networks. J. Mach. Learn. Res. 17(114), 1–5 (2016)MathSciNetzbMATHGoogle Scholar
- 15.Lapuschkin, S., Wäldchen, S., Binder, A., Montavon, G., Samek, W., Müller, K.R.: Unmasking Clever Hans predictors and assessing what machines really learn. Nat. Commun. 10, 1096 (2019)CrossRefGoogle Scholar
- 16.Li, J., Liu, Z., Zhang, X., Le Meur, O., Shen, L.: Spatiotemporal saliency detection based on superpixel-level trajectory. Sig. Process. Image Commun. 38, 100–114 (2015)CrossRefGoogle Scholar
- 17.Montavon, G., Lapuschkin, S., Binder, A., Samek, W., Müller, K.R.: Explaining nonlinear classification decisions with deep Taylor decomposition. Pattern Recogn. 65, 211–222 (2017)CrossRefGoogle Scholar
- 18.Montavon, G., Samek, W., Müller, K.R.: Methods for interpreting and understanding deep neural networks. Digit. Signal Proc. 73, 1–15 (2018)MathSciNetCrossRefGoogle Scholar
- 19.van den Oord, A., et al.: WaveNet: a generative model for raw audio. In: The 9th ISCA Speech Synthesis Workshop, Sunnyvale, CA, USA, 13–15 September 2016, p. 125 (2016)Google Scholar
- 20.Pohlen, T., Hermans, A., Mathias, M., Leibe, B.: Full-resolution residual networks for semantic segmentation in street scenes. In: IEEE CVPR, pp. 4151–4160 (2017)Google Scholar
- 21.Poulin, B., et al.: Visual explanation of evidence with additive classifiers. In: Proceedings, The Twenty-First National Conference on Artificial Intelligence and the Eighteenth Innovative Applications of Artificial Intelligence Conference, 16–20 July 2006, Boston, Massachusetts, USA, pp. 1822–1829 (2006)Google Scholar
- 22.Reed, S.E., Lee, H., Anguelov, D., Szegedy, C., Erhan, D., Rabinovich, A.: Training deep neural networks on noisy labels with bootstrapping. In: 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015, Workshop Track Proceedings (2015)Google Scholar
- 23.Ribeiro, M.T., Singh, S., Guestrin, C.: “Why should I trust you?”: explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016, pp. 1135–1144 (2016)Google Scholar
- 24.Samek, W., Binder, A., Montavon, G., Lapuschkin, S., Müller, K.: Evaluating the visualization of what a deep neural network has learned. IEEE Trans. Neural Netw. Learn. Syst. 28(11), 2660–2673 (2017)MathSciNetCrossRefGoogle Scholar
- 25.Schütt, K., Kindermans, P.J., Felix, H.E.S., Chmiela, S., Tkatchenko, A., Müller, K.R.: SchNet: a continuous-filter convolutional neural network for modeling quantum interactions. In: Advances in NIPS, pp. 992–1002 (2017)Google Scholar
- 26.Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. In: IEEE CVPR, pp. 618–626 (2017)Google Scholar
- 27.Sharma, S., Kiros, R., Salakhutdinov, R.: Action recognition using visual attention. CoRR abs/1511.04119 (2015)Google Scholar
- 28.Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional networks: visualising image classification models and saliency maps. In: 2nd International Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, 14–16 April 2014, Workshop Track Proceedings (2014)Google Scholar
- 29.Springenberg, J.T., Dosovitskiy, A., Brox, T., Riedmiller, M.A.: Striving for simplicity: The all convolutional net. In: 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015, Workshop Track Proceedings (2015)Google Scholar
- 30.Srinivasan, V., Lapuschkin, S., Hellge, C., Müller, K.R., Samek, W.: Interpretable human action recognition in compressed domain. In: IEEE ICASSP, pp. 1692–1696 (2017)Google Scholar
- 31.Sturm, I., Lapuschkin, S., Samek, W., Müller, K.R.: Interpretable deep neural networks for single-trial EEG classification. J. Neurosci. Methods 274, 141–145 (2016)CrossRefGoogle Scholar
- 32.Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., et al.: Going deeper with convolutions. In: IEEE CVPR, pp. 1–9 (2015)Google Scholar
- 33.Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotemporal features with 3D convolutional networks. In: IEEE ICCV, pp. 4489–4497 (2015)Google Scholar
- 34.Yang, C., Rangarajan, A., Ranka, S.: Visual explanations from deep 3D convolutional neural networks for Alzheimer’s disease classification. CoRR abs/1803.02544 (2018)Google Scholar
- 35.Yosinski, J., Clune, J., Nguyen, A.M., Fuchs, T.J., Lipson, H.: Understanding neural networks through deep visualization. CoRR abs/1506.06579 (2015)Google Scholar
- 36.Yue-Hei Ng, J., Hausknecht, M., Vijayanarasimhan, S., Vinyals, O., Monga, R., Toderici, G.: Beyond short snippets: deep networks for video classification. In: IEEE CVPR, pp. 4694–4702 (2015)Google Scholar
- 37.Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818–833. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_53CrossRefGoogle Scholar
- 38.Zhang, C., Tian, Y.: Automatic video description generation via LSTM with joint two-stream encoding. In: ICPR, pp. 2924–2929 (2016)Google Scholar
- 39.Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning deep features for discriminative localization. In: IEEE CVPR, pp. 2921–2929 (2016)Google Scholar