Advertisement

Stabilities of MIQD and MIQA Functional Equations via Fixed Point Technique

  • B. V. Senthil KumarEmail author
  • S. Sabarinathan
  • M. J. Rassias
Chapter

Abstract

In this chapter, we investigate the stabilities of multiplicative inverse quadratic difference and multiplicative inverse quadratic adjoint functional equations in the setting of non-Archimedean fields via fixed point method.

References

  1. 1.
    T. Aoki, On the stability of the linear transformation in Banach spaces. J. Math. Soc. Jpn. 2, 64–66 (1950)MathSciNetCrossRefGoogle Scholar
  2. 2.
    L. Cădariu, V. Radu, Fixed points and the stability of Jensen’s functional equation. J. Inequ. Pure Appl. Math. 4(1), Art. 4 (2003)Google Scholar
  3. 3.
    L. Cădariu, V. Radu, On the stability of the Cauchy functional equation: a fixed point approach. Grazer Math. Ber. 346, 43–52 (2006)MathSciNetzbMATHGoogle Scholar
  4. 4.
    P. Găvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings. J. Math. Anal. Appl. 184, 431–436 (1994)MathSciNetCrossRefGoogle Scholar
  5. 5.
    D.H. Hyers, On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA 27, 222–224 (1941)MathSciNetCrossRefGoogle Scholar
  6. 6.
    S.M. Jung, A fixed point approach to the stability of the equation \(f(x+y)=\frac {f(x)f(y)}{f(x)+f(y)}\). Aust. J. Math. Anal. Appl. 6(1), Art. 8, 1–6 (1998)Google Scholar
  7. 7.
    B. Margolis, J. Diaz, A fixed point theorem of the alternative for contractions on a generalized complete metric space. Bull. Am. Math. Soc. 74, 305–309 (1968)MathSciNetCrossRefGoogle Scholar
  8. 8.
    A.K. Mirmostafaee, Non-Archimedean stability of quadratic equations. Fixed Point Theory 11(1), 67–75 (2010)MathSciNetzbMATHGoogle Scholar
  9. 9.
    V. Radu, The fixed point alternative and the stability of functional equations. Fixed Point Theory 4(1), 91–96 (2003)MathSciNetzbMATHGoogle Scholar
  10. 10.
    T.M. Rassias, On the stability of the linear mapping in Banach spaces. Proc. Am. Math. Soc. 72, 297–300 (1978)MathSciNetCrossRefGoogle Scholar
  11. 11.
    J.M. Rassias, On approximation of approximately linear mappings by linear mappings. J. Funct. Anal. 46, 126–130 (1982)MathSciNetCrossRefGoogle Scholar
  12. 12.
    K. Ravi, S. Suresh, Solution and generalized Hyers–Ulam stability of a reciprocal quadratic functional equation. Int. J. Pure Appl. Math. 117(2), Art. No. AP2017-31-4927 (2017)Google Scholar
  13. 13.
    K. Ravi, J.M. Rassias, B.V. Senthil Kumar, A fixed point approach to the generalized Hyers–Ulam stability of reciprocal difference and adjoint functional equations. Thai J. Math. 8(3), 469–481 (2010)MathSciNetzbMATHGoogle Scholar
  14. 14.
    B.V. Senthil Kumar, A. Bodaghi, Approximation of Jensen type reciprocal functional equation using fixed point technique. Boletim da Sociedade Paranaense de Mat. 38(3) (2018).  https://doi.org/10.5269/bspm.v38i3.36992
  15. 15.
    S.M. Ulam, Problems in Modern Mathematics. Chapter VI (Wiley-Interscience, New York, 1964)zbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • B. V. Senthil Kumar
    • 1
    Email author
  • S. Sabarinathan
    • 2
  • M. J. Rassias
    • 3
  1. 1.Section of Mathematics, Department of Information TechnologyNizwa College of TechnologyNizwaOman
  2. 2.Department of MathematicsSRM Institute of Science & TechnologyKattankulathurIndia
  3. 3.Department of Statistical ScienceUniversity College LondonLondonUK

Personalised recommendations