# Inequalities for Symmetrized or Anti-Symmetrized Inner Products of Complex-Valued Functions Defined on an Interval

Chapter

## Abstract

For a function $$f:\left [ a,b\right ] \rightarrow \mathbb {C}$$ we consider the symmetrical transform of f on the interval $$\left [ a,b\right ],$$ denoted by f̆, and defined by
$$\displaystyle \breve {f}\left ( t\right ) :=\frac {1}{2}\left [ f\left ( t\right ) +f\left ( a+b-t\right ) \right ],t\in \left [a,b\right ]$$
and the anti-symmetrical transform of f on the interval $$\left [ a,b\right ]$$ denoted by $$\tilde {f}$$ and defined by
$$\displaystyle \tilde {f}:=\frac {1}{2}\left [ f\left ( t\right ) -f\left ( a+b-t\right ) \right ] ,t\in \left [ a,b\right ].$$
We consider in this paper the inner products
$$\displaystyle \left \langle f,g\right \rangle _{\smile }:=\int _{a}^{b}\breve {f}\left ( t\right ) \overline {\breve {g}\left ( t\right ) }dt\text{ and }\left \langle f,g\right \rangle _{\sim }:=\int _{a}^{b}\tilde {f}\left ( t\right ) \overline { \tilde {g}\left ( t\right ) }dt,$$
the corresponding norms and establish their fundamental properties. Some Schwarz and Grüss’ type inequalities are also provided.

## References

1. 1.
A.M. Acu, Improvement of Grüss and Ostrowski type inequalities. Filomat 29(9), 2027–2035 (2015)
2. 2.
A.M. Acu, H. Gonska, I. Raşa, Grüss-type and Ostrowski-type inequalities in approximation theory. Ukr. Math. J. 63(6), 843–864 (2011)
3. 3.
A.M. Acu, F. Sofonea, C.V. Muraru, Grüss and Ostrowski type inequalities and their applications. Sci. Stud. Res. Ser. Math. Inform. 23(1), 5–14 (2013)
4. 4.
M.W. Alomari, Some Grüss type inequalities for Riemann-Stieltjes integral and applications. Acta Math. Univ. Comenian. (N.S.) 81(2), 211–220 (2012)Google Scholar
5. 5.
M.W. Alomari, New Grüss type inequalities for double integrals. Appl. Math. Comput. 228 , 102–107 (2014)
6. 6.
M.W. Alomari, New inequalities of Grüss-Lupaş type and applications for selfadjoint operators. Armen. J. Math. 8(1), 25–37 (2016)
7. 7.
G.A. Anastassiou, Basic and s-convexity Ostrowski and Grüss type inequalities involving several functions. Commun. Appl. Anal. 17(2), 189–212 (2013)
8. 8.
G.A. Anastassiou, General Grüss and Ostrowski type inequalities involving S-convexity. Bull. Allahabad Math. Soc. 28(1), 101–129.880 (2013)
9. 9.
G.A. Anastassiou, Fractional Ostrowski and Grüss type inequalities involving several functions. PanAmer. Math. J. 24(3), 1–14 (2014)
10. 10.
G.A. Anastassiou, Further interpretation of some fractional Ostrowski and Grüss type inequalities. J. Appl. Funct. Anal. 9(3–4), 392–403 (2014)
11. 11.
P. Cerone, S.S. Dragomir, Some new Ostrowski-type bounds for the Čebyšev functional and applications. J. Math. Inequal. 8(1), 159–170 (2014)
12. 12.
X.-K. Chai, Y. Miao, Note on the Grüss inequality. Gen. Math. 19(3), 93–99 (2011)
13. 13.
S.S. Dragomir, A generalization of Grüss’s inequality in inner product spaces and applications. J. Math. Anal. Appl. 237(1), 74–82 (1999)
14. 14.
S.S. Dragomir, New Grüss’ type inequalities for functions of bounded variation and applications. Appl. Math. Lett. 25(10), 1475–1479 (2012)
15. 15.
S.S. Dragomir, Bounds for convex functions of Čebyšev functional via Sonin’s identity with applications. Commun. Math. 22(2), 107–132 (2014)
16. 16.
S.S. Dragomir, Some Grüss-type results via Pompeiu’s-like inequalities. Arab. J. Math. 4(3), 159–170 (2015)
17. 17.
S.S. Dragomir, Bounding the Čebyšev functional for a differentiable function whose derivative is h or λ-convex in absolute value and applications. Matematiche (Catania) 71(1), 173–202 (2016)Google Scholar
18. 18.
S.S. Dragomir, Bounding the Čebyšev functional for a function that is convex in absolute value and applications. Facta Univ. Ser. Math. Inform. 31(1), 33–54 (2016)
19. 19.
S.S. Dragomir, M.S. Moslehian, Y.J. Cho, Some reverses of the Cauchy-Schwarz inequality for complex functions of self-adjoint operators in Hilbert spaces. Math. Inequal. Appl. 17(4), 1365–1373 (2014). Preprint RGMIA Res. Rep. Coll. 14, Article 84. (2011). http://rgmia.org/papers/v14/v14a84.pdf
20. 20.
Q. Feng, F. Meng, Some generalized Ostrowski-Grüss type integral inequalities. Comput. Math. Appl. 63(3), 652–659 (2012)
21. 21.
B. Gavrea, Improvement of some inequalities of Chebysev-Grüss type. Comput. Math. Appl. 64(6), 2003–2010 (2012)
22. 22.
A.G. Ghazanfari, A Grüss type inequality for vector-valued functions in Hilbert C -modules. J. Inequal. Appl. 2014(16), 10 (2014)Google Scholar
23. 23.
S. Hussain, A. Qayyum, A generalized Ostrowski-Grüss type inequality for bounded differentiable mappings and its applications. J. Inequal. Appl. 2013(1), 7 (2013)Google Scholar
24. 24.
N. Minculete and L. Ciurdariu, A generalized form of Grüss type inequality and other integral inequalities. J. Inequal. Appl. 2014(119), 18 (2014)Google Scholar
25. 25.
A. Qayyum, S. Hussain, A new generalized Ostrowski Grüss type inequality and applications. Appl. Math. Lett. 25(11), 1875–1880 (2012)
26. 26.
M.-D. Rusu, On Grüss-type inequalities for positive linear operators. Stud. Univ. Babeş-Bolyai Math. 56(2), 551–565 (2011)
27. 27.
M.Z. Sarikaya, H. Budak, An inequality of Grüss like via variant of Pompeiu’s mean value theorem. Konuralp J. Math. 3(1), 29–35 (2015)