Advertisement

Approximate Solutions of an Additive-Quadratic-Quartic (AQQ) Functional Equation

  • Tianzhou XuEmail author
  • Yali Ding
  • John Michael Rassias
Chapter

Abstract

In this paper, the authors prove some stability and hyperstability results for an (AQQ): additive-quadratic-quartic functional equation of the form
$$\displaystyle \begin{aligned} \begin{array}{rcl} &\displaystyle &\displaystyle f(x+y+z)+ f(x+y-z)+ f(x-y+z)+f(x-y-z) \\ &\displaystyle &\displaystyle \quad =2[f(x+y)+ f(x-y)+f(y+z)+f(y-z)+ f(x+z)+ f(x-z)] \\ &\displaystyle &\displaystyle \qquad -4f(x) - 4f(y) -2[f(z) + f(-z)] \end{array} \end{aligned} $$
by using fixed point theory.

Keywords

Stability Additive-quadratic-quartic functional equation Fixed point theorem 

Mathematics Subject Classification

Primary 39B82; Secondary 39B52 

References

  1. 1.
    A. Bahyrycz, K. Ciepliński, On an equation characterizing multi-Jensen-quadratic mappings and its Hyers-Ulam stability via a fixed point method. J. Fixed Point Theory Appl. 18, 737–751 (2016)MathSciNetCrossRefGoogle Scholar
  2. 2.
    A. Bahyrycz, J. Brzdȩk, M. Piszczek, J. Sikorska, Hyperstability of the Fréchet equation and a characterization of inner product spaces. J. Funct. Spaces 2013, 496361, 7pp. (2013)Google Scholar
  3. 3.
    A. Bahyrycz, K. Ciepliński, J. Olko, On an equation characterizing multi-additive-quadratic mappings and its Hyers-Ulam stability. Appl. Math. Comput. 265, 448–455 (2015)MathSciNetzbMATHGoogle Scholar
  4. 4.
    A. Bahyrycz, J. Brzdȩk, E. Jabłońska, R. Malejki, Ulam’s stability of a generalization of the Fréchet functional equation. J. Math. Anal. Appl. 442, 537–553 (2016)Google Scholar
  5. 5.
    A. Bahyrycz, K. Ciepliński, J. Olko, On Hyers-Ulam stability of two functional equations in non-Archimedean spaces. J. Fixed Point Theory Appl. 18, 433–444 (2016)MathSciNetCrossRefGoogle Scholar
  6. 6.
    J. Brzdȩk, L. Cădariu, Stability for a family of equations generalizing the equation of p-Wright affine functions. Appl. Math. Comput. 276, 158–171 (2016)Google Scholar
  7. 7.
    J. Brzdȩk, K. Ciepliński, Hyperstability and superstability. Abstr. Appl. Anal. 2013, 401756, 13pp. (2013)Google Scholar
  8. 8.
    J. Brzdȩk, J. Chudziak, Z. Páles, A fixed point approach to stability of functional equations. Nonlinear Anal. 74, 6728–6732 (2011)Google Scholar
  9. 9.
    J. Brzdȩk, L. Cadariu, K. Ciepliński, Fixed point theory and the Ulam stability. J. Funct. Spaces 2014, 829419, 16pp. (2014)Google Scholar
  10. 10.
    J. Brzdȩk, D. Popa, I. Raşa, B. Xu, Ulam Stability of Operators, Mathematical Analysis and its Applications (Academic Press, Cambridge, 2018)Google Scholar
  11. 11.
    K. Ciepliński, A. Surowczyk, On the Hyers-Ulam stability of an equation characterizing multi-quadratic mappings. Acta Math. Sci. 35, 690–702 (2015)MathSciNetCrossRefGoogle Scholar
  12. 12.
    M. Eshaghi Gordji, M.B. Savadkouhi, Stability of mixed type cubic and quartic functional equations in random normed spaces. J. Inequal. Appl. 2009, 527462, 9pp. (2009)Google Scholar
  13. 13.
    P. Găvruţa, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings. J. Math. Anal. Appl. 184, 431–436 (1994)MathSciNetCrossRefGoogle Scholar
  14. 14.
    J.M. Rassias, M. Arunkumar, E. Sathya, N.M. Kumar, Generalized Ulam-Hyers stability of on (AQQ): additive-quadratic-quartic functional equation. Malaya J. Mat. 5, 122–142 (2017)Google Scholar
  15. 15.
    R. Saadati, S.M. Vaezpour, C. Park, The stability of the cubic functional equation in various spaces. Math. Commun. 16, 131–145 (2011)MathSciNetzbMATHGoogle Scholar
  16. 16.
    S.M. Ulam, A Collection of the Mathematical Problems (Interscience, New York, 1960)zbMATHGoogle Scholar
  17. 17.
    T.Z. Xu, Stability of multi-Jensen mappings in non-Archimedean normed spaces. J. Math. Phys. 53, 023507, 9pp. (2012)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of Mathematics and StatisticsBeijing Institute of TechnologyBeijingPeople’s Republic of China
  2. 2.School of Arts and SciencesShaanxi University of Science and TechnologyXianPeople’s Republic of China
  3. 3.National and Kapodistrian University of AthensPedagogical Department E. E., Section of Mathematics and InformaticsAthensGreece

Personalised recommendations