Advertisement

On Some Functional Equations with Applications in Networks

  • El-Sayed El-HadyEmail author
Chapter

Abstract

Functional equations appear in many applications. They provide a powerful tool for narrowing the models used to describe many phenomena. In particular, some class of functional equations arises recently from many applications, e.g. networks and communication. In this chapter on the one hand, we present some functional equations of the same class of interest. On the other hand, we use boundary value problem theory to investigate the solution of a special functional equation: an equation arising from some queueing model.

References

  1. 1.
    A. Abbas, J. Aczél, The role of some functional equations in decision analysis. Decis. Anal. 7, 215–228 (2010)CrossRefGoogle Scholar
  2. 2.
    I. Adan, J. Wessels, W. Zijm, Analyzing multiprogramming queues by generating functions. SIAM J. Appl. Math 53, 1123–1131 (1993)MathSciNetCrossRefGoogle Scholar
  3. 3.
    I.-J.-B.-F. Adan, O.-J. Boxma, J.-A. Resing, Queueing models with multiple waiting lines. Queueing Syst. 37, 65–98 (2001)MathSciNetCrossRefGoogle Scholar
  4. 4.
    J. Aczél, Lectures on Functional Equations and Their Applications (Academic Press, New York, 1966)zbMATHGoogle Scholar
  5. 5.
    J.V. Armitage, W.F. Eberlein, Elliptic Functions (Cambridge University Press, Cambridge, 2006), p. 67CrossRefGoogle Scholar
  6. 6.
    C. Blackorby, W. Bossert, D. Donaldson, Functional equations and population ethics. Aequat. Math. 58(3), 272–284 (1999)MathSciNetCrossRefGoogle Scholar
  7. 7.
    O. Boxma, G. Koole, Z. Liu, Queueing theoretic solution methods for models of parallel and distributed systems, in Performance Evaluation of Parallel and Distributed Systems Solution Methods, ed. by O. Boxma, G. Koole (1994), pp. 1–24Google Scholar
  8. 8.
    J. Brzdek, El-S. El-hady, W. Förg-Rob, Z. Leśniak, A note on solutions of a functional equation arising in a queuing model for a LAN gateway. Aequat. Math. 90(4), 671–681 (2016)Google Scholar
  9. 9.
    J.W. Cohen, Boundary value problems in queueing theory. Queueing Syst. 3, 97–128 (1988)MathSciNetCrossRefGoogle Scholar
  10. 10.
    J.W. Cohen, On the asymmetric clocked buffered switch. Queueing Syst. 30, 985–404 (1998)MathSciNetCrossRefGoogle Scholar
  11. 11.
    J.W. Cohen, O.J. Boxma, Boundary Value Problems in Queueing System Analysis. Mathematics Studies (Elsevier, Amsterdam, 2000)zbMATHGoogle Scholar
  12. 12.
    Z. Daroczy, Z. Pales, Functional Equations Results and Advances. Advances in Mathematics, vol. 3 (Springer, Dordecht, 2002)Google Scholar
  13. 13.
    R. Dautray, J.L Lions, Mathematical Analysis and Numerical Methods for Science and Technology. Physics Today, vol. 4 (Springer, Berlin, 1991)Google Scholar
  14. 14.
    El-S. El-hady, W. Förg-Rob, M. Mahmoud, On a two-variable functional equation arising from databases. WSEAS Trans. Math. 14, 265–270 (2015)Google Scholar
  15. 15.
    El-S. El-hady, J. Brzdek, H. Nassar, On the structure and solutions of functional equations arising from queueing models. Aequat. Math. 91, 445–477 (2017)Google Scholar
  16. 16.
    El-S. El-hady, J. Brzdȩk, W. Förg-Rob, H. Nassar, Remarks on solutions of a functional equation arising from an asymmetric switch, in Contributions in Mathematics and Engineering (Springer, Berlin, 2016), pp. 153–163Google Scholar
  17. 17.
    G. Fayoll, R. Iasnogorodski, Two coupled processors: the reduction to a Riemann-Hilbert problem, in Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, vol. 47 (Springer, Berlin, 1979), pp. 325–351Google Scholar
  18. 18.
    L. Flatto, S. Hahn, Two parallel queues created by arrivals with two demands I. SIAM J. Appl. Math. 44, 1041–1053 (1984)MathSciNetCrossRefGoogle Scholar
  19. 19.
    W. Gehrig, Functional equation methods applied to economic problems: some examples, in Functional Equations: History, Applications and Theory (Springer, Berlin, 1985), pp. 33–52Google Scholar
  20. 20.
    F. Guillemin, J.-S.-H. van Leeuwaarden, Rare event asymptotic for a random walk in the quarter plane. Queueing Syst. 67, 1–32 (2011)MathSciNetCrossRefGoogle Scholar
  21. 21.
    L. Kindermann, A. Lewandowski, P. Protzel, A framework for solving functional equations with neural networks. Neural Inf. Process. 2, 1075–1078 (2001)Google Scholar
  22. 22.
    H. Nassar, Two-dimensional queueing model for a LAN gateway. WSEAS Trans. Commun. 5, 1585 (2006)Google Scholar
  23. 23.
    H. Nassar, El-S. El-hady, Closed form solution of a LAN gateway queueing model, in Contributions in Mathematics and Engineering (Springer, Berlin, 2016), pp. 393–427Google Scholar
  24. 24.
    J. Resing, L. Ormeci, A tandem queueing model with coupled processors. Oper. Res. Lett. 31, 383–389 (2003)MathSciNetCrossRefGoogle Scholar
  25. 25.
    P.-K. Sahoo, L. Székelyhidi, On a functional equation related to digital filtering. Aequat. Math. 62, 280–285 (2001)MathSciNetCrossRefGoogle Scholar
  26. 26.
    M. Sidi, A. Segall, Two interfering queues in packet-radio networks. IEEE Trans. Commun. 31, 123–129 (1983)CrossRefGoogle Scholar
  27. 27.
    C.-G. Small, Functional Equation and How to Solve Them (Springer, Waterloo, 2007)CrossRefGoogle Scholar
  28. 28.
    P.-E. Wright, Two parallel processors with coupled inputs. Adv. Appl. Probab. 24, 986–1007 (1992)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Mathematics DepartmentCollege of Science, Jouf UniversitySakakaKingdom of Saudi Arabia
  2. 2.Basic Science DepartmentFaculty of Computers and Informatics, Suez Canal UniversityIsmailiaEgypt

Personalised recommendations