Normal Gastric Motility

  • Kirstie E. Jarrett
  • Robert E. GlasgowEmail author


Gastric neuromuscular function is a highly complex process that is influenced by many different intrinsic and extrinsic factors, some of which are not completely understood. The goal of gastric motility is not only to facilitate the transfer of foodstuffs from the esophagus to the duodenum but also to do so at an appropriate speed and volume. This section will outline normal gastric neuromuscular function, as well as the systems that exert control over each step in the process. There is also a brief discussion of common gastric pathologies and their effects on the different neuromuscular systems that control gastric motility.


Gastric motility Slow waves Interstitial cells of Cajal Enteric nervous system Receptive relaxation Trituration Gastric emptying Gastroparesis 


  1. 1.
    Koch KL. Electrogastrography. In: Feldman M, Friedman L, Brandt L, editors. Sleisenger and Fordtran’s gastrointestinal and liver disease. Philadelphia: Saunders; 2016. p. 811.Google Scholar
  2. 2.
    Kim C, Malagelada J. Electrical activity of the stomach: clinical implications. Mayo Clin Proc. 1986;61(3):205–10.PubMedCrossRefGoogle Scholar
  3. 3.
    Sanders K, Ward S, Koh S. Interstitial cells: regulators of smooth muscle function. Physiol Rev. 2014;94(3):859–907.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Kraichely R, Farrugia G. Mechanosensitive ion channels in interstitial cells of Cajal and smooth muscle of the gastrointestinal tract. Neurogastroenterol Motil. 2007;19:245–52.PubMedCrossRefGoogle Scholar
  5. 5.
    Sanders K, Koh S, Ward S. Interstitial cells of Cajal as pacemakers in the gastrointestinal tract. Annu Rev Physiol. 2006;68:307–43.PubMedCrossRefGoogle Scholar
  6. 6.
    Ordog T, Ward S, Sanders K. Interstitial cells of Cajal generate electrical slow waves in the murine stomach. J Physiol. 1999;518:257–69.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Horowitz B, Ward S, Sanders K. Cellular and molecular basis for electrical rhythmicity in gastrointestinal muscles. Annu Rev Physiol. 1999;61:19–43.PubMedCrossRefGoogle Scholar
  8. 8.
    Komuro T. Structure and organization of interstitial cells of Cajal in the gastrointestinal tract. J Physiol. 2006;576:653–8.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Huizinga J. Physiology and pathophysiology of the interstitial cell of Cajal: from bench to bedside II. Gastric motility: lessons from mutant mice on slow waves and innervation. Am J Phys. 2001;281:G1129–34.Google Scholar
  10. 10.
    Koch KL. Gastric neuromuscular function and neuromuscular disorders. In: Feldman M, Friedman L, Brandt L, editors. Sleisenger and Fordtran’s gastrointestinal and liver disease, vol. 2. 10th ed. Philadelphia: Saunders; 2016.Google Scholar
  11. 11.
    Ward S, Ordog T, Koh S, et al. Pacemaking in interstitial cells of Cajal depends upon calcium handling by endoplasmic reticulum and mitochondria. J Physiol. 2000;525:355–61.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Lee H, Hennig G, Fleming N, et al. Septal interstitial cells of Cajal conduct pacemaker activity to excite muscle bundles in human jejunum. Gastroenterology. 2007;133:907–17.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Won K, Sanders K, Ward S. Interstitial cells of Cajal mediate mechanosensitive responses in the stomach. Proc Natl Acad Sci U S A. 2005;102:121–6.Google Scholar
  14. 14.
    Hall JE. General principles of gastrointestinal function – motility, nervous control, and blood circulation. In: Guyton and Hall textbook of medical physiology. 13th ed. Philadelphia: Elsevier; 2016.Google Scholar
  15. 15.
    Grundy D, Schemann M. Enteric nervous system. Curr Opin Gastroenterol. 2007;23:121–6.PubMedCrossRefGoogle Scholar
  16. 16.
    Benarroch E. Enteric nervous system: functional organization and neurologic implications. Neurology. 2007;69:1953–7.PubMedCrossRefGoogle Scholar
  17. 17.
    Gershon M, Tack J. The serotonin signaling system: from basic understanding to drug development for functional GI disorders. Gastroenterology. 2007;132:397–414.PubMedCrossRefGoogle Scholar
  18. 18.
    Huizinga J. Gastrointestinal peristalsis: joint action of enteric nerves, smooth muscle, and interstitial cells of Cajal. Microsc Res Tech. 1999;47:239–47.PubMedCrossRefGoogle Scholar
  19. 19.
    Drake RL, Vogl AW, Mitchell AW. Gray’s anatomy for students. 4th ed. Philadelphia: Elsevier; 2019. p. 123–247.Google Scholar
  20. 20.
    Ward S, Sanders K. Interstitial cells of Cajal: primary targets of enteric motor innervation. Anat Rec. 2001;262:125–35.PubMedCrossRefGoogle Scholar
  21. 21.
    Travagli RA, Anselmi L. Vagal neurocircuitry and its influence on gastric motility. Nat Rev Gastroenterol Hepatol. 2016;13(7):389–401.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Lomax A, Vanner S. Presynaptic inhibition of neural vasodilator pathways to submucosal arterioles by release of purines from sympathetic nerves. Am J Physiol Gastrointest Liver Physiol. 2010;298:G700–5.PubMedCrossRefGoogle Scholar
  23. 23.
    Takahashi T. Interdigestive migrating motor complex -its mechanism and clinical importance. J Smooth Muscle Res. 2013;49:99–111.PubMedCrossRefGoogle Scholar
  24. 24.
    Deloose E, et al. The migrating motor complex: control mechanisms and its role in health and disease. Nat Rev Gastroenterol Hepatol. 2017;9(5):271–85.CrossRefGoogle Scholar
  25. 25.
    Vantrappen G, et al. Motilin and the interdigestive migrating motor complex in man. Dig Dis Sci. 1979;24:497–500.PubMedCrossRefGoogle Scholar
  26. 26.
    Itoh Z, et al. Motilin-induced mechanical activity in the canine alimentary tract. Scand J Gastroenterol Suppl. 1976;39:93–110.PubMedGoogle Scholar
  27. 27.
    Boivin M, Riberdy M, Trudel L, St-Pierre S, Poitras P. Plasma motilin variation during the interdigestive and digestive states in man. Neurogastroenterol Motil. 1990;2:240–6.CrossRefGoogle Scholar
  28. 28.
    Qvist N, et al. Increases in plasma motilin follow each episode of gallbladder emptying during the interdigestive period, and changes in serum bile acid concentration correlate to plasma motilin. Scand J Gastroenterol. 1995;30:122–7.PubMedCrossRefGoogle Scholar
  29. 29.
    Perdikis G, et al. Altered antroduodenal motility after cholecystectomy. Am J Surg. 1994;168:609–14.PubMedCrossRefGoogle Scholar
  30. 30.
    Koch KL. Physiological basis of electrogastrography. In: Feldman M, Friedman L, Brandt L, editors. Sleisenger and Fordtran’s gastrointestinal and liver disease. Philadelphia: Saunders; 2016. p. 816.Google Scholar
  31. 31.
    Tack J, Demedts I, Meulemans A, et al. Role of nitric oxide in the gastric accommodation reflex and in meal induced satiety in humans. Gut. 2002;51:219–24.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Maurer AH, Parkman HP, Knight LC, Fisher RS. Scintigraphy. In: Feldman M, Friedman L, Brandt L, editors. Sleisenger and Fordtran’s gastrointestinal and liver disease. Philadelphia: Saunders; 2016. p. 818.Google Scholar
  33. 33.
    Feldman M, Friedman L, Brandt L, editors. Sleisenger and Fordtran’s gastrointestinal and liver disease. Philadelphia: Saunders; 2016.Google Scholar
  34. 34.
    Parkman HP, Hasler WL, Barnett JL, Eaker EY. Electrogastrography: a document prepared by the gastric section of the American Motility Society Clinical GI Motility Testing Task Force. Neurogastroenterol Motil. 2003;15(2):89–102.PubMedCrossRefGoogle Scholar
  35. 35.
    Pappas T, Debas H, Taylor I. Enterogastrone-like effect of peptide YY is vagally mediated in the dog. J Clin Invest. 1986;77(1):490–53.CrossRefGoogle Scholar
  36. 36.
    Gilja OH, Detmer PR, Jong JM, et al. Intragastric distribution and gastric emptying assessed by three-dimensional ultrasonography. Gastroenterology. 1997;113:38–49.PubMedCrossRefGoogle Scholar
  37. 37.
    Camilleri M, Malagelada J, Brown M, et al. Relation between antral motility and gastric emptying of solids and liquids in humans. Am J Phys. 1985;249:G580–5.Google Scholar
  38. 38.
    Moran T, Wirth J, Schwartz G, McHugh P. Interactions between gastric volume and duodenal nutrients in the control of liquid gastric emptying. Am J Phys. 1999;276:R997–R1002.Google Scholar
  39. 39.
    Indireshkumar K, Brasseur J, Faas H, et al. Relative contributions of “pressure pump” and “peristaltic pump” to gastric emptying. Am J Phys. 2000;278:G604–16.Google Scholar
  40. 40.
    Savoye-Collet C, Savoye G, Smout A. Determinants of transpyloric fluid transport: a study using combined real-time ultrasound, manometry, and impedance recording. Am J Phys. 2003;285:G1147–52.Google Scholar
  41. 41.
    Intagliata N, Koch K. Gastroparesis in type 2 diabetes mellitus: prevalence, etiology, diagnosis and treatment. Curr Gastroenterol Rep. 2007;9:270–9.PubMedCrossRefGoogle Scholar
  42. 42.
    Coleski R, Hasler W. Coupling and propagation of normal and dysrhythmic gastric slow waves during acute hyperglycemiain healthy humans. Neurogastroenterol Motil. 2009;21(5):492–9.PubMedCrossRefGoogle Scholar
  43. 43.
    Jebbink R, Samsom M, Bruijs P, et al. Hyperglycemia induces abnormalities of gastric myoelectrical activity in patients with type 1 diabetes mellitus. Gastroenterology. 1994;107:1390–7.PubMedCrossRefGoogle Scholar
  44. 44.
    Hasler W, Soudah H, Dulai G, Owyang C. Mediation of hyperglycemia-evoked gastric slow-wave dysrhythmias by endogenous prostaglandins. Gastroenterology. 1995;108:727–36.PubMedCrossRefGoogle Scholar
  45. 45.
    Shvarcz E, Plamar M, Aman J, et al. Physiological hyperglycemia slows gastric emptying in normal subjects and patients with insulin-dependent diabetes. Gastroenterology. 1997;113:60–6.CrossRefGoogle Scholar
  46. 46.
    He C, Soffer E, Ferris C, et al. Loss of interstitial cells of Cajal and inhibitory innervation in insulin-dependent diabetes. Gastroenterology. 2001;121:427–34.PubMedCrossRefGoogle Scholar
  47. 47.
    Ordog T. Interstitial cells of Cajal in diabetic gastroenteropathy. Neurogastroenterol Motil. 2008;20:8–18.PubMedCrossRefGoogle Scholar
  48. 48.
    Fraser R, Horowitz M, Dent J. Hyperglycemia stimulates pyloric motility in normal subjects. Gut. 1991;32:475–8.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Malagelada J, Rees W, Mazzotta L, Go V. Gastric motor abnormalities in diabetic and postvagotomy gastroparesis: effect of metoclopramide and bethanechol. Gastroenterology. 1980;78(2):286–93.PubMedCrossRefGoogle Scholar
  50. 50.
    Samsom M, Roelofs J, Akkermans L, et al. Proximal gastric motor activity in response to a liquid meal in type I diabetes mellitus with autonomic neuropathy. Dig Dis Sci. 1998;43(3):491–6.PubMedCrossRefGoogle Scholar
  51. 51.
    Grover M, Farrugia G, Lurken M, et al. Cellular changes in diabetic and idiopathic gastroparesis. Gastroenterology. 2011;140:1575–85.PubMedCrossRefGoogle Scholar
  52. 52.
    Faussone-Pellegrini M, Pasricha P, Bernard C, et al. Ultrastructural differences between diabetic and idiopathic gastroparesis. J Cell Mol Med. 2011;16:1573–81.CrossRefGoogle Scholar
  53. 53.
    Koch K. Diabetic gastropathy: gastric neuromuscular dysfunction in diabetes mellitus. A review of symptoms, pathophysiology, and treatment. Dig Dis Sci. 1999;44:1061–75.PubMedCrossRefGoogle Scholar
  54. 54.
    Soykan I, Sivri B, Saroseik I, et al. Demography, clinical characteristics, psychological and abuse profiles, treatment, and long-term follow-up of patients with gastroparesis. Dig Dis Sci. 1998;43:2398–404.PubMedCrossRefGoogle Scholar
  55. 55.
    Parkman H, Yates K, Hasler W, et al. Clinical features of idiopathic gastroparesis vary with sex, body mass, symptom onset, delay in gastric emptying and severity of gastroparesis. Gastroenterology. 2011;140:101–15.PubMedCrossRefGoogle Scholar
  56. 56.
    Oh J, Kim C. Gastroparesis after a presumed viral illness: clinical and laboratory features and natural history. Mayo Clin Proc. 1990;65:636–42.PubMedCrossRefGoogle Scholar
  57. 57.
    Cowley D, Vernon P, Jones T, et al. Gastric emptying of solid meals after truncal vagotomy and pyloroplasty in human subjects. Gut. 1972;13:176–81.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Hinder R, Kelley K. Human gastric pacesetter potential: site of origin, spread, and response to gastric transection and proximal vagotomy. Am J Surg. 1997;133:29–33.CrossRefGoogle Scholar
  59. 59.
    Fich A, Neri M, Camilleri M, et al. Stasis syndromes following gastric surgery: clinical and motility features of 60 symptomatic patients. J Clin Gastroenterol. 1990;12:505–12.PubMedCrossRefGoogle Scholar
  60. 60.
    Eagon J, Miedema B, Kelly K. Postgastrectomy syndromes. Surg Clin North Am. 1992;72:445–65.PubMedCrossRefGoogle Scholar
  61. 61.
    Le Blanc-Louvry I, Savoye G, Maillot C, et al. An impaired accommodation of the proximal stomach to a meal is associated with symptoms after distal gastrectomy. Am J Gastroenterol. 2003;98:2642–7.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of SurgeryUniversity of UtahSalt Lake CityUSA

Personalised recommendations