Advertisement

The Mule Deer of the Mapimí Biosphere Reserve

  • Sonia Gallina-TessaroEmail author
  • Gerardo Sánchez-Rojas
  • Dante Hernández-Silva
  • Luz A. Pérez-Solano
  • Luis García-Feria
  • Juan Pablo Esparza-Carlos
Chapter

Abstract

In this chapter we present information collected from the population of mule deer in Mapimí, the first Biosphere Reserve in Mexico and Latin America. The reserve was decreed in 1979, covers 342,388 ha and is located at the junction of the states of Durango, Coahuila, and Chihuahua. Mule deer population dynamics data from 14 nonconsecutive years were used to analyze population density, using indirect methods such as counting fecal pellet groups, population structure by age and sex, population growth rate, and their relationship to precipitation in this arid environment. Feeding habits are presented, with mention of the main species in their diet as well as the nutrient content of the latter, diet quality was estimated by sex and age as a function of fecal nitrogen to determine if there were any differences and the relationship of habitat use and diet to sexual segregation. Data on home range and core area size are presented, as are the way in which habitat in the Chihuahuan Desert is being used by the mule deer taking the dry and rainy seasons into account, and how the risk of predation affects behavior using radiotelemetry techniques. Extensive cattle pasturing is the main economic activity in this arid zone and our data indicate that there is little overlap of habitat and little zoonosis, which is a rare occurrence between deer and cattle. The information compiled demonstrates that the population of mule deer in Mapimí is the best studied population in Mexico and should be used as a model to develop suitable strategies to improve the sustainable use of this species. The results also highlight the importance of protected areas as sources of knowledge creation and transfer.

Keywords

Behavioral ecology Coexistence Core area Disease Feeding ecology Home range Population dynamics Predation risk 

Notes

Acknowledgments

We are grateful to the Comisión Nacional de Áreas Naturales Protegidas—Reserva de la Biosfera de Mapimí and to the Secretaría del Medio Ambiente y Recursos Naturales for issuing the required permits (No. SEMARNAT/DGVS/00234 and 00954). The Rufford Foundation small grants program and the Consejo Nacional de Ciencia y Tecnología, CONACYT provided funding. We thank Rolando González-Trápaga and Francisco Herrera, along with the graduate students of the Instituto de Ecología, A. C. and of the Universidad Autónoma del Estado de Hidalgo for help in the field. Adriana Sandoval-Comte provided support with the Geographic Information Systems. Bianca Delfosse revised the English.

References

  1. Aguirre AA, Hansen DE, Starkey EE et al (1995) Serologic survey of wild cervids for potential disease agents in selected national parks in the United States. Prev Vet Med 21:313–322CrossRefGoogle Scholar
  2. Aguirre BRJ, Bortoni VL, Villarreal JG (2016) Restauración y manejo del venado bura (Odocoileus heminonus eremicus) en el rancho Corrizalejo, San Buenaventura, Coahuila, México (años 2000–2015). In: Universidad Nacional Autónoma de México, XV Simposio sobre Venados de México, Ciudad de México, pp 65–82Google Scholar
  3. Alcalá-Galván CH, Krausman P (2013) Home range and habitat use by desert mule deer in altered habitats. Calif Fish Game 99:65–79Google Scholar
  4. Altendorf KB, Laundré JW, López-González CA et al (2001) Assessing effects of predation risk on foraging behavior of mule deer. J Mammal 82:430–439CrossRefGoogle Scholar
  5. Alves J, Alves da Silva A, Soares AMVM et al (2013) Sexual segregation in red deer: is social behaviour more important than habitat preferences? Anim Behav 85:501–509CrossRefGoogle Scholar
  6. Anthony R, Smith N (1977) Ecological relationships between mule deer and white-tailed deer in southeastern Arizona. Ecol Monogr 47:255–277CrossRefGoogle Scholar
  7. Arias-Del-Razo I, Hernández L, Laundré JW et al (2011) Do predator and prey foraging activity patterns match? A study of coyotes (Canis latrans), and lagomorphs (Lepus californicus and Sylvilagus audobonii). J Arid Environ 75:112–118CrossRefGoogle Scholar
  8. Asensio N, Lusseau CD, Schaffner M et al (2012) Spider monkeys use high-quality core areas in a tropical dry forest. J Zool 287:250–258CrossRefGoogle Scholar
  9. Asensio N, Brockelman WY, Malaivijitnond S et al (2014) White-handed Gibbon (Hylobates lar) core area use over a short-time scale. Biotropica 46:461–469CrossRefGoogle Scholar
  10. Austin DD, Urness PJ (1986) Effects of cattle grazing on mule deer diet and area selection. J Range Manag 39:18–21CrossRefGoogle Scholar
  11. Álvarez-Cárdenas S, Gallina S, Galina-Tessaro P et al (1999) Mule deer population dynamics in a relictual oak-pine forest in Baja California Sur, Mexico. In: Folliott PF, Ortega-Rubio A (eds) Ecology and management of forests, woodlands and shrublands in the dryland regions of the United States and México: perspectives for the 21st century. University of Arizona y Centro de Investigaciones Biológicas del Noreste, Tempe, pp 197–210Google Scholar
  12. Bailey DW (2005) Identification and creation of optimum habitat conditions for livestock. Rangeland Ecol Manag 58:109–118CrossRefGoogle Scholar
  13. Baldomenico PM, Begon M (2015) Stress-host-parasite interactions: a vicious triangle? FAVE Cs Veterinarias 14:6–19CrossRefGoogle Scholar
  14. Ballard WB, Lutz D, Keegan TW et al (2001) Deer-predator relationships: a review of recent North American studies with emphasis on mule and black-tailed deer. Wildl Soc Bull 29(1):99–115Google Scholar
  15. Barboza PS, Bowyer RT (2000) Sexual segregation in dimorphic deer: a new gastrocentric hypothesis. J Mammal 81(2):473–489CrossRefGoogle Scholar
  16. Barral H, Hernández L (2001) Los ecosistemas pastoreados desérticos y sus diversas formas de aprovechamiento: análisis de tres casos. In: Hernández L (ed) Historia ambiental de la ganadería en México. Instituto de Ecología A.C., Xalapa, Veracruz, México, pp 85–97Google Scholar
  17. Beest FLV, Rivrud IM, Loe LE et al (2011) What determines variation in home range size across spatiotemporal scales in a large browsing herbivore? J Anim Ecol 80:771–785PubMedCrossRefGoogle Scholar
  18. Bender LC, Hoenes BD, Rodden CL (2012) Factors influencing foraging habitats of mule deer (Odocoileus hemionus) in the San Andres Mountains, New Mexico. Southwest Nat 57(4):370–379CrossRefGoogle Scholar
  19. Bishop CJ, White GC, Freddy DJ et al (2009) Effect of enhanced nutrition on mule deer population rate of change. Wildl Monogr 172:1–28CrossRefGoogle Scholar
  20. Bolen EG, Robinson WL (2003) Wildlife ecology and management, 5th edn. Prentice Hall, Upper Saddle River, NJGoogle Scholar
  21. Bowyer RT (2004) Sexual segregation in ruminants: definitions, hypotheses, and implications for conservation and management. J Mammal 85(6):1039–1052CrossRefGoogle Scholar
  22. Bowyer RT, Kie JG (2004) Effects of foraging activity on sexual segregation in mule deer. J Mammal 85(3):498–504CrossRefGoogle Scholar
  23. Bowyer RT, Kie JG, Van Ballenberghe V (1996) Sexual segregation in black-tailed deer: effects of scale. J Wildl Manag 60(1):10–17CrossRefGoogle Scholar
  24. Brown JS (1999) Vigilance, patch use and habitat selection: foraging under predation risk. Evol Ecol Res 1:49–71Google Scholar
  25. Brunjes K, Ballard W, Humphrey M et al (2006) Habitat use by sympatric mule and white-tailed deer in Texas. J Wildl Manag 70(5):1351–1359CrossRefGoogle Scholar
  26. Burt WH (1943) Territoriality and home range concepts as applied to mammals. J Mammal 24:346–352CrossRefGoogle Scholar
  27. Bergman EJ, Doherty Jr.FP, White CG, Holland AA (2015) Density dependence in mule deer: a review of evidence. Wildlife Biology 21(1):18–29.  https://doi.org/10.2981/wlb.00012.CrossRefGoogle Scholar
  28. Cain JW III, Krausman PR, Rosenstock SS et al (2006) Mechanisms of thermoregulation and water balance in desert ungulates. Wildl Soc Bull 34:570–581CrossRefGoogle Scholar
  29. Calhim S, Shi JB, Dunbar RIM (2006) Sexual segregation among feral goats: testing between alternative hypotheses. Anim Behav 72:31–41CrossRefGoogle Scholar
  30. Cantú AJ, Ortega A, Mosqueda J et al (2007) Immunologic and molecular identification of Babesia bovis and Babesia bigemina in freeranging white-tailed deer in northern Mexico. J Wildl Dis 43:504–507PubMedCrossRefGoogle Scholar
  31. Caro TM, Graham CM, Stoner CJ et al (2004) Adaptive significance of antipredator behaviour in artiodactyls. Anim Behav 67:205–228CrossRefGoogle Scholar
  32. Carrera R, Ballard WB, Krausman PR et al (2015) Reproduction and nutrition of desert mule deer with and without predation. Southwest Nat 60(4):285–298CrossRefGoogle Scholar
  33. Chaikina NA, Ruckstuhl KE (2006) The effect of cattle grazing on native ungulates: the good, the bad, and the ugly. Rangelands 28:8–14CrossRefGoogle Scholar
  34. Ciuti S, Jensen WF, Nielsen SE et al (2015) Predicting mule deer recruitment from climate oscillations for harvest management on the northern Great Plains. J Wildl Manag 79:1226–1238CrossRefGoogle Scholar
  35. Clutton-Brock TH, Iason GR, Albon SD et al (1982) The effects of lactation on feeding behavior and habitat use of wild red deer hinds. J Zool 198:227–236CrossRefGoogle Scholar
  36. CONANP (Comisión Nacional de Áreas Naturales Protegidas) (2006) Programa de conservación y manejo de la Reserva de la Biosfera de Mapimí, México. CONANP, Distrito Federal, MéxicoGoogle Scholar
  37. Conradt L (1998) Measuring the degree of sexual segregation in group-living animals. J Anim Ecol 67(2):217–226CrossRefGoogle Scholar
  38. Cossío-Bayúgar A (2015) Uso del hábitat y su relación con la presencia-ausencia de parásitos en el venado bura (Odocoileus hemionus) de la Reserva de la Biosfera de Mapimí, México. Dissertation, Instituto de Ecología, A.CGoogle Scholar
  39. Cossío-Bayúgar A, Sisto-Burt AM (2011) Definición y medición del bienestar animal. In: Medina-Cruz M (ed) Clínica, cirugía y producción de becerras y vaquillas lecheras. 12 Editorial AC, Ciudad de México, pp 116–128Google Scholar
  40. Cossío-Bayúgar A, Romero E, Gallina S et al (2016) Variation of gastrointestinal parasites in mule deer and cattle in Mapimi Biospere Reserve, Mexico. Southwest Nat 60(2–3):180–185Google Scholar
  41. Craft ME (2015) Infectious disease transmission and contact networks in wildlife and livestock. Phil Trans R Soc B 370:20140107PubMedCrossRefGoogle Scholar
  42. Davies NB, Krebs JR, West SA (2012) An introduction to behavioural ecology, 4th edn. Wiley-Blackwell, ChichesterGoogle Scholar
  43. De la Cruz-Morales NP (2017) Estudio de la segregación sexual del venado bura en la reserva de la biosfera de Mapimí, evaluando sus consecuencias ecológicas. Dissertation, Universidad Autónoma del Estado de HidalgoGoogle Scholar
  44. De la Torre J, de la Riva G (2009) Food habits of pumas (Puma concolor) in a semiarid region of Central Mexico. Mastozool Neotrop 16:211–216Google Scholar
  45. Denny RN (1976) Regulations and mule deer harvest-political and biological management. In: Proceeding’s: Mule deer decline in the West. Utah State University, Logan, UT, pp 87–92Google Scholar
  46. Dubey JP, Odening K (2001) Toxoplasmosis and related infections. In: Samuel MW, Pybus MJ, Kocan AA (eds) Parasitic diseases of wild mammals, 2nd edn. Iowa State University Press, Ames, pp 478–519CrossRefGoogle Scholar
  47. Duszynski DW, Upton SJ (2001) Cyclospora, Eimeria, Isospora, and Cryptosporidium spp. In: Samuel MW, Pybus MJ, Kocan AA (eds) Parasitic diseases of wild mammals, 2nd edn. Iowa State University Press, Ames, pp 416–459CrossRefGoogle Scholar
  48. Eberhardt LL, Van Etten RC (1956) Evaluation of pellet group count as a deer census method. J Wildl Manag 20:70–74CrossRefGoogle Scholar
  49. Enríquez A (2001) Invasión de plantas arbustivas en los pastizales de Chihuahua. In: Hernández L (ed) Historia ambiental de la ganadería en México. Instituto de Ecología A.C., Xalapa, pp 98–107Google Scholar
  50. Esparza-Carlos JP, Laundré JW, Sosa VJ (2011) Precipitation impacts on mule deer habitat use in the Chihuahuan desert of Mexico. J Arid Environ 75:1008–1015CrossRefGoogle Scholar
  51. Esparza-Carlos JP, Laundré JW, Hernández L et al (2016) Apprehension affecting foraging patterns and landscape use of mule deer in arid environments. Mamm Biol 81(6):543–550CrossRefGoogle Scholar
  52. Esparza-Carlos JP, Íñiguez-Dávalos LI, Laundré JW (2018) Microhabitat and top predator presence affects prey apprehension in a subtropical mountain forest. J Mammal 99:596–607CrossRefGoogle Scholar
  53. Findholt SL, Johnson BK, Damiran D et al (2004) Diet composition, dry matter intake, and diet overlap of mule deer, elk, and cattle. In: Transactions of the 69th North American Wildlife and Natural Resources Conference, Lawrence, Kansas, USA, pp 670–696Google Scholar
  54. Foreyt WJ (2001) Veterinary parasitology reference manual, 5th edn. Blackwell Publishing, Ames, IAGoogle Scholar
  55. Foroughbakhch R, Hernández-Piñero JL, Ramírez R et al (2007) Seasonal dynamics of leaf nutrient profile of 20 native shrubs in Northeastern Mexico. J Anim Vet Adv 6:1000–1005Google Scholar
  56. Forrester TD, Wittmer HU (2013) A review of the population dynamics of mule deer and black-tailed deer Odocoileus hemionus in North America. Mammal Rev 43:292–308CrossRefGoogle Scholar
  57. Galindo-Leal C (1993) Densidades poblacionales de los venados cola blanca, cola negra y bura en Norte América. In: Medellín RA, Ceballos G (eds) Avances en el estudio de los mamíferos de México, vol 1. Asociación Mexicana de Mastozoología A.C., México, pp 371–391Google Scholar
  58. Gallina S, García-Feria L, González-Trápaga R (2017) Ocotillo flowers as food resource for the mule deer during the dry season. Therya 8(2):185–188CrossRefGoogle Scholar
  59. Geist V (1981) Behavior: adaptive strategies in mule deer. In: Wallmo OC (ed) Mule and black tailed deer of North America. Wildlife Management Institute book. University of Nebraska Press, Nebraska, pp 157–223Google Scholar
  60. Geist V (1998) Deer of the world: their evolution, behaviour, and ecology. Stackpole Books, MechanicsburgGoogle Scholar
  61. Getz WM, Saltz D (2008) A framework for generating and analyzing movement paths on ecological landscape. Proc Natl Acad Sci U S A 105:19066–19071PubMedPubMedCentralCrossRefGoogle Scholar
  62. Gil-Jiménez E, Villamuelas M, Serrano E et al (2015) Fecal nitrogen concentration as a nutritional quality indicator for European rabbit ecological studies. PLoS One 10(4):e0125190PubMedPubMedCentralCrossRefGoogle Scholar
  63. Gosling L (2003) Adaptive behavior and population viability. In: Festa-Bianchet M, Apollonio M (eds) Animal behavior and wildlife conservation. Island Press, Washington, pp 13–30Google Scholar
  64. Guth AMCG (1987) Hábitos alimenticios del venado bura (Odocoileus hemionus Rafinesque 1817) en la Reserva de la Biosfera de Mapimí Dgo. Dissertation, Escuela Nacional de Estudios Profesionales Iztacala, Universidad Nacional Autónoma de MéxicoGoogle Scholar
  65. Hagerman AE, Robbins CT (1993) Specificity of tannin-binding salivary proteins relative to diet selection by mammals. Can J Zool 71(3):628–633CrossRefGoogle Scholar
  66. Hassel JM, Begon M, Ward MJ et al (2017) Urban and disease emergence dynamics at the wildlife-livestock-human interface. Trends Ecol Evol 32:55–67CrossRefGoogle Scholar
  67. Heffelfinger J (2006) Deer of the Southwest: a complete guide to the natural history, biology, and management of southwestern mule deer and white. Texas A&M University Press, College Station, TXGoogle Scholar
  68. Heffelfinger JR, Brewer C, Alcalá-Galván CH et al (2006) Habitat guidelines for mule deer: southwest deserts ecoregion. Mule Deer Working Group, Western Association of Fish and Wildlife Agencies, Boise, IDGoogle Scholar
  69. Hernández HM (2006) La vida en los desiertos Mexicanos. Fondo de Cultura Económica, Ciudad de MéxicoGoogle Scholar
  70. Hernández L, Parmenter RR, Dewitt JW et al (2002a) Coyote diets in the Chihuahuan Desert, more evidence for optimal foraging. J Arid Environ 51:613–624CrossRefGoogle Scholar
  71. Hernández L, Laundré JW, Gurung M (2005) Use of camera traps to measure predation risk in a puma-mule deer system. Wildl Soc Bull 33:353–358CrossRefGoogle Scholar
  72. Hernández L, Parmenter RR, Dewitt JW et al (2002b) Coyote diets in the Chihuahuan Desert, more evidence for optimal foraging. J Arid Environ 51:613–624CrossRefGoogle Scholar
  73. Hernández-SaintMartín AD, Rosas-Rosas OC, Palacio-Núñez J et al (2015) Food habits of jaguar and puma in a protected area and adjacent fragmented landscape of Northeastern Mexico. Nat Areas J 35:308–317CrossRefGoogle Scholar
  74. Hernández-Silva DA (2018) Manejo de fauna silvestre como herramienta en la conservación y el aprovechamiento sustentable de la biodiversidad. Dissertation, Universidad Autónoma del estado de HidalgoGoogle Scholar
  75. Hoberg EP, Kocan AA, Rickard LG (2001) Gastrointestinal strongyles in wild ruminants. In: Samuel MW, Pybus MJ, Kocan AA (eds) Parasitic diseases of wild mammals, 2nd edn. Iowa State University Press, Ames, pp 193–221CrossRefGoogle Scholar
  76. Hoberg EP, Polley L, Jenkins EJ et al (2008) Pathogens of domestic and free-ranging ungulates: global climate change in temperate to boreal latitudes across North America. Rev Sci Tech 27:511–528PubMedCrossRefGoogle Scholar
  77. Hodgman TP, Davitt BB, Nelson JR (1996) Monitoring mule deer diet quality and intake with fecal indices. J Range Manag 49:215–222CrossRefGoogle Scholar
  78. Holyoak M, Casagrandi R, Nathan R et al (2008) Trends and missing parts in the study of movement ecology. Proc Natl Acad Sci U S A 105:19060–19065PubMedPubMedCentralCrossRefGoogle Scholar
  79. Jones A, Pybus MJ (2001) Taeniasis and Echinococcosis. In: Samuel MW, Pybus MJ, Kocan AA (eds) Parasitic diseases of wild mammals, 2nd edn. Iowa State University Press, Ames, pp 150–192CrossRefGoogle Scholar
  80. Kernohan BJ, Gitzen RA, Millspaugh JJ (2001) Analysis of animal space use and movement. In: Millspaugh JJ, Marzluff JM (eds) Radio tracking and animal populations. Academic, San Diego, pp 125–166CrossRefGoogle Scholar
  81. Kie JG (1996) The effects of cattle grazing on optimal foraging in mule deer (Odocoileus hemionus). Forest Ecol Manag 88:131–138CrossRefGoogle Scholar
  82. Kie JG, Bowyer RT (2004) Effects of foraging activity on sexual segregation in mule deer. J Mammal 85:498–504CrossRefGoogle Scholar
  83. Kie JG, Bowyer RT, Nicholson MC et al (2002) Landscape heterogeneity at differing scales: effects on spatial distribution of mule deer. Ecology 83(2):530–544CrossRefGoogle Scholar
  84. Laundré JW, Hernández L, Altendorf KB (2001) Wolves, elk, and bison: reestablishing the “landscape of fear” in Yellowstone National Park, USA. Can J Zool 79:1401–1409CrossRefGoogle Scholar
  85. Loik ME, Breshears DD, Lauenroth WK et al (2004) A multi-scale perspective of water pulses in dryland ecosystems: climatology and ecohydrology of the western USA. Oecologia 141(2):269–281PubMedCrossRefGoogle Scholar
  86. Lomas LA, Bender L (2007) Survival and cause-specific mortality of neonatal mule deer fawns, north-central New Mexico. J Wildl Manag 71(3):884–894CrossRefGoogle Scholar
  87. Mackie RJ, Kie JG, Pac DF et al (2003) Mule deer. Odocoileus hemionus. In: Feldhamer GA, Thompson BC, Chapman JA (eds) Wild mammals of North America. Biology, management, and conservation. Johns Hopkins University Press, Baltimore, MD, pp 889–905Google Scholar
  88. Main MB, Coblentz BE (1996) Sexual segregation in Rocky Mountain mule deer. J Wildl Manag 60:497–507CrossRefGoogle Scholar
  89. Main MB, Weckerly FW, Bleich VC (1996) Sexual segregation in ungulates: new directions for research. J Mammal 77(2):449–461CrossRefGoogle Scholar
  90. Marshal JP, Bleich VC, Krausman PR et al (2006) Factors affecting habitat use and distribution of desert mule deer in an arid environment. Wildl Soc Bull 34:609–619CrossRefGoogle Scholar
  91. Martínez-Muñoz A, Hewitt DG, Valenzuela S et al (2003) Habitat and population status of desert mule deer in Mexico. Z Jagdwiss 49:14–24Google Scholar
  92. Montaña C (1988) Las formaciones vegetales. In: Montaña C (ed) Estudio integrado de los recursos vegetación, suelo y agua en la reserva de la biosfera de Mapimí. Instituto de Ecología A.C., Distrito Federal, pp 167–197Google Scholar
  93. Myers WL, Foreyt WJ, Talcott PA et al (2015) Serologic, trace element, and fecal parasite survey of free-ranging, female mule deer (Odocoileus hemionus) in eastern Washington, USA. J Wildl Dis 51(1):125–136PubMedCrossRefGoogle Scholar
  94. Mysterud A, Pérez-Barbería FJ, Gordon IJ (2001) The effect of season, sex and feeding style on home range area versus body mass scaling in temperate ruminants. Oecologia 127:30–39PubMedCrossRefGoogle Scholar
  95. Nathan R, Getz WM, Revilla E et al (2008) A movement ecology paradigm for unifying organismal movement research. Proc Natl Acad Sci U S A 105:19052–19059PubMedPubMedCentralCrossRefGoogle Scholar
  96. Núñez R, Miller B, Lindzey F (2000) Food habits of jaguars and pumas in Jalisco, Mexico. J Zool 252:373–379CrossRefGoogle Scholar
  97. Olson ME, Buret AG (2001) Giardia and giardiasis. In: Samuel MW, Pybus MJ, Kocan AA (eds) Parasitic diseases of wild mammals, 2nd edn. Iowa State University Press, Ames, pp 399–415CrossRefGoogle Scholar
  98. Ortega SJA (2008) Interacciones bovinos/fauna silvestre en pastizales. In: Memorias del XI Simposio sobre venados en México Ing. Jorge G. Villareal González. Departamento de Etología, Fauna Silvestre y Animales de Laboratorio de la Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México/Asociación Nacional de Ganaderos Diversificados/Consejo Estatal de Flora y Fauna de Nuevo León, A.C., Distrito Federal (Mexico City), 28–30 May 2008Google Scholar
  99. Pac DF, Mackie RJ, Jorgensen HE (1991) Muler deer population organization behavior and dynamics in a northern Rocky Mountain environment. Final Report, Project W-120-R-7-18, Montana Department of Fish Wildlife and ParksGoogle Scholar
  100. Perez-Barberia FJ, Gordon IJ (2000) Differences in body mass and oral morphology between the sexes in the Artiodactyla: evolutionary relationships with sexual segregation. Evol Ecol Res 2(5):667–684Google Scholar
  101. Perez-Barberia FJ, Gordon IJ, Pagel M (2002) The origins of sexual dimorphism in body size in ungulates. Evolution 56(6):1276–1285PubMedCrossRefGoogle Scholar
  102. Perez-Barberia FJ, Robertson E, Gordon IJ (2005) Are social factors sufficient to explain sexual segregation in ungulates? Anim Behav 69:827–834CrossRefGoogle Scholar
  103. Pérez-Solano LA, Gallina-Tessaro S, Sánchez-Rojas G (2016) Individual variation in mule deer (Odocoileus hemionus) habitat and home range in the Chihuahuan Desert, Mexico. J Mammal 97:1228–1237CrossRefGoogle Scholar
  104. Pérez-Solano LA, García-Feria LM, Gallina-Tessaro S (2017) Factors affecting the selection of and displacement within core areas by female mule deer (Odocoileus hemionus) in the Chihuahuan Desert, Mexico. Mammal Biol 87:152–159CrossRefGoogle Scholar
  105. Peripolli V, Prates ÊR, Jardim-Barcellos JO et al (2011) Fecal nitrogen to estimate intake and digestibility in grazing ruminants. Anim Feed Sci Technol 163:17–176CrossRefGoogle Scholar
  106. Powell RA (2000) Animal home ranges and territories and home range estimators. In: Boitani L, Fuller TK (eds) Research techniques in animal ecology: controversies and consequences. Columbia University Press, New York, pp 65–110Google Scholar
  107. Putman R, Flueck WT (2011) Intraespecific variation in biology and ecology of deer: magnitude and causation. Anim Prod Sci 51:277–291CrossRefGoogle Scholar
  108. Pybus MJ (2001) Liver flukes. In: Samuel MW, Pybus MJ, Kocan AA (eds) Parasitic diseases of wild mammals, 2nd edn. Iowa State University Press, Ames, pp 121–149CrossRefGoogle Scholar
  109. Ramírez-Lozano RG (2004) Nutrición del venado cola blanca. Universidad Autónoma de Nuevo León, Unión Ganadera Regional de Nuevo León, Fundación Produce Nuevo León, Monterrey, Nuevo León, MéxicoGoogle Scholar
  110. Righini N (2017) Recent advances in primate nutritional ecology. Am J Primatol 79(4):1–5PubMedGoogle Scholar
  111. Robbins CT (1983) Wildlife feeding and nutrition. Academic, New YorkGoogle Scholar
  112. Robinson HS, Wielgus RB, Gwilliam JC (2002) Cougar predation and population growth of sympatric mule deer and white-tailed deer. Can J Zool 80:556–568CrossRefGoogle Scholar
  113. Ruckstuhl KE, Neuhaus P (2002) Sexual segregation in ungulates: a comparative test of three hypotheses. Biol Rev 77(1):77–96PubMedCrossRefGoogle Scholar
  114. Ruckstuhl KE, Neuhaus P (2005) Sexual segregation in vertebrates: ecology of the two sexes. Cambridge University Press, CambridgeGoogle Scholar
  115. Sánchez-Rojas G (2000) Conservación y manejo del venado bura en la Reserva de la Biosfera de Mapimí. Dissertation, Instituto de Ecología A.C.Google Scholar
  116. Sánchez-Rojas G, Gallina S (2000a) Factors affecting habitat use by mule deer (Odocoileus hemionus) in the central part of the Chihuahuan Desert, Mexico: an assessment with univariate and multivariate methods. Ethol Ecol Evol 12:405–417CrossRefGoogle Scholar
  117. Sánchez-Rojas G, Gallina S (2000b) Mule deer (Odocoileus hemionus) density in a landscape element of the Chihuahuan Desert, Mexico. J Arid Environ 44:357–368CrossRefGoogle Scholar
  118. Sánchez-Rojas G, Gallina S, Equihua M (2004) Pellet morphometry as tool to distinguish age and sex in the mule deer. Zoo Biol 23:139–146CrossRefGoogle Scholar
  119. Sánchez-Rojas G, Gallina S (2006) La metapoblación del venado bura en la reserva de la biósfera Mapimí, México: consideraciones para su conservación. Cuadernos de Biodiversidad 22:7–15Google Scholar
  120. Sánchez-Rojas G, Gallina S (2007) Metapoblaciones el reto en la biología de la conservación: El caso del venado bura en el Bolsón de Mapimí. In: Sánchez-Rojas G, Rojas-Martínez A (eds) Tópicos en Sistemática, Biogeografía, Ecología y Conservación de Mamíferos. Universidad Autónoma del Estado de Hidalgo, Mexico, pp 115–124Google Scholar
  121. Sánchez-Rojas G, Gallina-Tessaro S (2016) Odocoileus hemionus. The IUCN Red List of Threatened Species 2016:e.T42393A22162113.  https://doi.org/10.2305/IUCN.UK.2016-1.RLTS.T42393A22162113
  122. Schwarm A, Ortmann S, Wolf C et al (2009) More efficient mastication allows increasing intake without compromising digestibility or necessitating a larger gut: comparative feeding trials in banteng (Bos javanicus) and pygmy hippopotamus (Hexaprotodon liberiensis). Comp Biochem Physiol A Mol Integr Physiol 152:504–512PubMedCrossRefGoogle Scholar
  123. Shields AV, Larsen RT, Whiting JC (2012) Summer watering patterns of mule deer in the Great Basin Desert, USA: implications of differential use by individuals and the sexes for management of water resources. Sci World J 12:1–9CrossRefGoogle Scholar
  124. Sinclair ARE, Fryxell JM, Caughley G (2006) Wildlife ecology, conservation, and management. Blackwell Publishing, Hoboken, NJGoogle Scholar
  125. Siuta A, Bobek B (2006) Comparison of red deer stomachs in relation to different foraging habitats. Med Weter 62(1):32–35Google Scholar
  126. Stubblefield SS, Pence DB, Warren RJ (1987) Visceral helminth communities of sympatric mule and white-tailed deer from the Davis Mountains of Texas. J Wildl Dis 23:113–120PubMedCrossRefGoogle Scholar
  127. Van Soest P (1996) Allometry and ecology of feeding behavior and digestive capacity in herbivores: a review. Zoo Biol 15:455–479CrossRefGoogle Scholar
  128. Verheyden H, Aubry L, Merlet J et al (2011) Faecal nitrogen, an index of diet quality in roe deer Capreolus capreolus? Wildl Biol 17(2):166–176CrossRefGoogle Scholar
  129. Wade PD, Mcdonald BK (2010) Distribution of the mule deer (Odocoileus hemionus) in Oklahoma: an analysis of harvest data. Proc Okla Acad Sci 90:111–116Google Scholar
  130. Wallmo OC (1981) Mule and black-tailed deer distribution and habitats. In: Wallmo OC (ed) Mule and black-tailed deer of North America. University of Nebraska Press, Lincoln, pp 366–386Google Scholar
  131. Walters WR, Palmer MV (2015) Mycobacterium bovis infection of cattle and white-tailed deer: translational research of relevance to human tuberculosis. ILAR J 56:26–43CrossRefGoogle Scholar
  132. Wearmouth VJ, Sims DW (2008) Sexual segregation in marine fish, reptiles, birds and mammals: behaviour patterns, mechanisms and conservation implications. Adv Mar Biol 54:107–170PubMedCrossRefPubMedCentralGoogle Scholar
  133. Wehausen JD (1995) Fecal measures of diet quality in wild and domestic ruminants. J Wildl Manag 59:816–823CrossRefGoogle Scholar
  134. Workman GW, Low JB (1976) Mule deer decline in the west: a symposium. Utah State University and Utah Agricultural Experiment Station, Logan, UTGoogle Scholar
  135. Xiangfei Y, Tonghui Z, Xueyong Z et al (2016) Effects of rainfall patterns on annual plants in Horqin Sandy Land, Inner Mongolia of China. J Arid Land 8(3):389–398CrossRefGoogle Scholar
  136. Ydenberg RC, Brown JS, Stephens DW (2007) Foraging: an overview. In: Stephens DW, Brown JS, Ydenberg RC (eds) Foraging: behavior and ecology. University of Chicago Press, Chicago, pp 1–28Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Red de Biología y Conservación de VertebradosInstituto de Ecología A.C.VeracruzMexico
  2. 2.Centro de Investigaciones BiológicasUniversidad Autónoma del Estado de HidalgoPachucaMexico
  3. 3.Research and ManagementWild Forest Consulting S.C.MorelosMexico
  4. 4.Departamento de Ecología y Recursos NaturalesUniversidad de GuadalajaraGuadalajaraMexico

Personalised recommendations