Pattern Formation of Ordinary States

  • Till Frank
Part of the Springer Series in Synergetics book series (SSSYN)


This chapter considers human pattern formation systems for which pattern formation takes place in their ordinary states. Recall that the ordinary state is given by the brain state and variables describing force production as well as position and movement of the body and limbs. Pattern formation of ordinary states implies that the formation of patterns does not affect the structure of those systems. With respect to the system classes introduced in Chap.  5 (see Fig.  5.5) this further implies that we are dealing with A1 systems and all B systems. However, in fact, while the pattern emerges in an appropriately defined ordinary state and, consequently, the pattern does not involve structure components, the structure is not necessarily fixed. In particular, external forces may affect the structure of the systems under consideration in order to induce bifurcations that lead to the formation of BA and BBA patterns. Therefore, not only A1 systems and B systems are considered but also D0 and D2 systems. D1 and D3 systems are considered when considering single events of pattern formation (which will be explained in more detail in the sections below).


  1. 3.
    R.M. Alexander, Exploring Biomechanics: Animals in Motion (W. H. Freeman, New York, 1992)Google Scholar
  2. 16.
    S. Barbay, G. Giacomelli, F. Marin, Stochastic resonance in vertical cavity surface emitting lasers. Phys. Rev. E 61, 157–166 (2000)ADSCrossRefGoogle Scholar
  3. 38.
    P.C. Bressloff, J.D. Cowan, M. Golubitsky, P.J. Thomas, M.C. Wiener, Geometric visual hallucinations, Euclidean symmetry and the functional architecture of striate cortex. Phil. Trans. R. Soc. Lond. B 356, 299–330 (2001)zbMATHCrossRefGoogle Scholar
  4. 39.
    P.C. Bressloff, J.D. Cowan, M. Golubitsky, P.J. Thomas, M.C. Wiener, What geometric visual hallucinations tell us about the visual cortex. Neural Comput. 14, 473–491 (2002)zbMATHCrossRefGoogle Scholar
  5. 43.
    C. Carello, A. Grosofsky, F.D. Reichel, H.Y. Solomon, M.T. Turvey, Visually perceiving what is reachable. Ecol. Psychol. 1, 27–54 (1989)CrossRefGoogle Scholar
  6. 48.
    S. Chiangga, T.D. Frank, Stochastic properties in bistable region of single-transverse-mode vertical-surface emitting lasers. Nonlin. Phenom. Complex Syst. 13, 32–37 (2010)Google Scholar
  7. 61.
    A. Daffertshofer, H. Haken, A new approach to recognition of deformed patterns. Pattern Recogn. 27, 1697–1705 (1994)CrossRefGoogle Scholar
  8. 64.
    F.J. Diedrich, W.H. Warren, Why change gaits? Dynamics of the walk-run transition. J. Exp. Psychol. - Hum. Percept. Perform. 21, 183–202 (1995)CrossRefGoogle Scholar
  9. 65.
    F.J. Diedrich, W.H. Warren, The dynamics of gait transitions: effects of grade and load. J. Motor Behav. 30, 60–78 (1998)CrossRefGoogle Scholar
  10. 83.
    P. Fitzpatrick, C. Carello, R.C. Schmidt, D. Corey, Haptic and visual perception of an affordance for upright posture. Ecol. Psychol. 6, 265–287 (1994)CrossRefGoogle Scholar
  11. 90.
    T.D. Frank, On a multistable competitive network model in the case of an inhomogeneous growth rate spectrum with an application to priming. Phys. Lett. A 373, 4127–4133 (2009)ADSzbMATHCrossRefGoogle Scholar
  12. 95.
    T.D. Frank, New perspectives on pattern recognition algorithm based on Haken’s synergetic computer network, in Perspective on Pattern Recognition ed. by M.D. Fournier, pp. 153–172, Chap. 7 (Nova Publ., New York, 2011)Google Scholar
  13. 97.
    T.D. Frank, Multistable pattern formation systems: candidates for physical intelligence. Ecol. Psychol. 24, 220–240 (2012)CrossRefGoogle Scholar
  14. 105.
    T.D. Frank, Domains of attraction of walking and running attractors are context dependent: illustration for locomotion on tilted floors. Int. J. Sci. World 3, 81–90 (2015)ADSCrossRefGoogle Scholar
  15. 109.
    T.D. Frank, Perception adapts via top-down regulation to task repetition: a Lotka-Volterra-Haken modelling analysis of experimental data. J. Integr. Neurosci. 15, 67–79 (2016)CrossRefGoogle Scholar
  16. 110.
    T.D. Frank, A synergetic gait transition model for hysteretic gait transitions from walking to running. J. Biol. Syst. 24, 51–61 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 111.
    T.D. Frank, Unstable modes and order parameters of bistable signaling pathways at saddle-node bifurcations: a theoretical study based on synergetics. Adv. Math. Phys. 2016, article 8938970 (2016)Google Scholar
  18. 112.
    T.D. Frank, Determinism of behavior and synergetics, in Encyclopedia of Complexity and Systems Science, ed. by R.A. Meyers, Chap. 695 (Springer, Berlin, 2018)Google Scholar
  19. 120.
    T.D. Frank, M.J. Richardson, S.M. Lopresti-Goodman, M.T. Turvey, Order parameter dynamics of body-scaled hysteresis and mode transitions in grasping behavior. J. Biol. Phys. 35, 127–147 (2009)CrossRefGoogle Scholar
  20. 122.
    T.D. Frank, V.L.S. Profeta, H. Harrison, Interplay between order parameter and system parameter dynamics: considerations on perceptual-cognitive-behavioral mode-mode transitions exhibiting positive and negative hysteresis and response times. J. Biol. Phys. 41, 257–292 (2015)CrossRefGoogle Scholar
  21. 125.
    R.W. Frischholz, F.G. Boebel, K.P. Spinner, Face recognition with the synergetic computer, in Proceedings of the First International Conference on Applied Synergetics and Synergetic Engineering (Frauenhofer Institute IIS., Erlangen, 1994), pp. 100–106Google Scholar
  22. 127.
    A. Fuchs, H. Haken, Pattern recognition and associative memory as dynamical processes in a synergetic system. I. Translational invariance, selective attention and decomposition of scene. Biol. Cybern. 60, 17–22 (1988)Google Scholar
  23. 133.
    J.J. Gibson, The Ecological Approach to Visual Perception (Houghton-Mifflin, Boston, 1979)Google Scholar
  24. 139.
    S. Gori, E. Giora, R. Pedersini, Perceptual multistability in figure-ground segregation using motion stimuli. Acta Psychol. 129, 399–409 (2008)CrossRefGoogle Scholar
  25. 144.
    S. Grillner, Neurobiological bases of rhythmic motor acts in vertebrates. Science 228, 143–149 (1985)ADSCrossRefGoogle Scholar
  26. 145.
    S. Grillner, P. Wallen, Central pattern generators for locomotion, with special reference to vertebrates. Annu. Rev. Neurosci. 8, 233–261 (1985)CrossRefGoogle Scholar
  27. 147.
    S. Grossberg, C. Pribe, M.A. Cohen, Neural control of interlimb oscillations. I. Human bimanual coordination. Biol. Cybern. 64, 485–495 (1997)zbMATHGoogle Scholar
  28. 156.
    H. Haken, Light: Laser Light Dynamics (North Holland, Amsterdam, 1991)Google Scholar
  29. 157.
    H. Haken, Synergetic Computers and Cognition (Springer, Berlin, 1991)zbMATHCrossRefGoogle Scholar
  30. 164.
    N. Hirose, A. Nishio, The process of adaptation to perceiving new action capabilities. Ecol. Psychol. 13, 49–69 (2001)CrossRefGoogle Scholar
  31. 167.
    A. Hreljac, Effects of physical characteristics on the gait transition speed during human locomotion. Hum. Mov. Sci. 14, 205–216 (1995)CrossRefGoogle Scholar
  32. 168.
    A. Hreljac, R. Imamura, R.F. Escamilla, W.B. Edwards, Effects of changing protocol, grade, and direction on the preferred gait transition speed during human locomotion. Gait Posture 25, 419–424 (2007)CrossRefGoogle Scholar
  33. 171.
    R.T. Hurlburt, S.A. Akhter, Unsymbolized thinking. Conscious. Cogn. 17, 1364–1374 (2008)CrossRefGoogle Scholar
  34. 172.
    L. Iosa, L. Gizzi, F. Tamburella, N. Dominici, Editorial: neuro-motor control and feed-forward models of locomotion in humans. Front. Hum. Neurosci. 9, article 306 (2015)Google Scholar
  35. 179.
    B. Katz, Nerve, Muscle and Synapse (McGraw-Hill, New York, 1966)Google Scholar
  36. 187.
    S. Kim, T.D. Frank, Correlations between hysteretic categorical and continuous judgments of perceptual stimuli supporting a unified dynamical systems approach to perception. Perception 47, 44–66 (2018)CrossRefGoogle Scholar
  37. 188.
    A. Kleinschmidt, C. Buchel, C. Hutton, K.J. Friston, R.S.J. Frackowiak, The neural structures expressing perceptual hysteresis in visual letter recognition. Neuron 34, 659–666 (2002)CrossRefGoogle Scholar
  38. 192.
    S.M. Kosslyn, R.S. Rosenberg, Psychology: the Brain, the Person, the World (Allyn and Bacon, New York, 2001)Google Scholar
  39. 193.
    S.M. Kosslyn, W.L. Thompson, I.J. Kim, N.M. Albert, Topographical representations of mental images in primary visual cortex. Nature 378, 496–498 (1953)ADSCrossRefGoogle Scholar
  40. 195.
    S.M. Kosslyn, A. Pascual-Leone, O. Felician, S. Camposano, W.L. Thompson, W.L. Ganis, K.E. Sukel, N.M. Albert, The role of area 17 in visual imagery: convergent evidence from PET and rTMS. Science 284, 167–170 (1999)ADSCrossRefGoogle Scholar
  41. 200.
    A.D. Kuo, The relative roles of feedforward and feedback in the control o rhythmic movements. Motor Control 6, 129–145 (2002)CrossRefGoogle Scholar
  42. 211.
    L. Li, Stability landscapes of walking and running near gait transition speed. J. Appl. Biomater. 16, 428–435 (2000)Google Scholar
  43. 214.
    S.M. Lopresti-Goodman, M. Richardson, M.J. Baron, C. Carello, K.L. Marsh, Task constraints on affordance boundaries. Motor Control 13, 69–83 (2009)CrossRefGoogle Scholar
  44. 215.
    S.M. Lopresti-Goodman, M.T. Turvey, T.D. Frank, Behavioral dynamics of the affordance “graspable”. Atten. Percept. Psychophys. 73, 1948–1965 (2011)CrossRefGoogle Scholar
  45. 232.
    L.S. Mark, Eyeheight-scaled information about affordances: a study of sitting and stair climbing. J. Exp. Psychol. - Hum. Percept. Perform. 13, 361–370 (1987)CrossRefGoogle Scholar
  46. 233.
    N.I. Markevich, J.B. Hoek, B.N. Kholodenko, Signaling switches and bistability arising from multisite phopsphorylation in protein kinase cascades. J. Cell Biol. 164, 353–359 (2004)CrossRefGoogle Scholar
  47. 244.
    B. Nagler, M. Peeters, J. Albert, G. Verschaffelt, K. Panajotov, H. Thiehpont, I. Veretnnicoff, J. Danckaert, S. Barbay, G. Giacomelli, F. Marin, Polarization-mode hopping in single-mode vertical-cavity surface-emitting lasers: theory and experiment. Phys. Rev. A 68, 013813 (2003)ADSCrossRefGoogle Scholar
  48. 248.
    K.M. Newell, D.M. Scully, P.V. McDonald, R. Baillargeon, Task constraints and infant grip configuration. Dev. Psychobiol. 22, 817–832 (1989)CrossRefGoogle Scholar
  49. 249.
    K.M. Newell, D.M. Scully, F. Tenenbaum, S. Hardiman, Body scale and the development of prehension. Dev. Psychobiol. 22, 1–13 (1989)CrossRefGoogle Scholar
  50. 252.
    G. Nicolis, Introduction to Nonlinear Sciences (Cambridge University Press, Cambridge, 1995)CrossRefGoogle Scholar
  51. 257.
    F. Ortega, J.L. Garces, F. Mas, B.N. Kholodenko, M. Cascante, Bistability from double phosphorylation in signal transduction. FEBS J. 273, 3915–3926 (2004)CrossRefGoogle Scholar
  52. 262.
    S. Poltoratski, F. Tong, Hysteresis in dynamic perception of scenes and objects. J. Exp. Psychol. - General 143, 1875–1892 (2014)CrossRefGoogle Scholar
  53. 263.
    H.G. Purwins, H.U. Bödeker, S. Amiranasvili, Dissipative solitons. Adv. Phys. 59, 485–701 (2010)ADSCrossRefGoogle Scholar
  54. 264.
    P.B. Putfall, C. Dunbar, Perceiving whether or not the world affords stepping onto and over: a developmental study. Ecol. Psychol. 4, 17–38 (1992)CrossRefGoogle Scholar
  55. 269.
    M.J. Richardson, K.L. Marsh, R.M. Baron, Judging and actualizing intrapersonal and interpersonal affordances. J. Exp. Psychol. - Hum. Percept. Perform. 33, 845–859 (2007)CrossRefGoogle Scholar
  56. 291.
    C.M. Schwiedrizik, C.C. Ruff, A. Lazar, F.C. Leitner, W. Singer, L. Melloni, Untangling perceptual memory: hysteresis and adaptation map into separate cortical networks. Cereb. Cortex 24, 1152–1164 (2014)CrossRefGoogle Scholar
  57. 296.
    M.N. Shadlen, W.T. Newsome, Motion perception: seeing and deciding. Proc. Natl. Acad. Sci. USA 93, 628–633 (1996)ADSCrossRefGoogle Scholar
  58. 297.
    M.N. Shadlen, W.T. Newsome, Neural basis of a perceptual decision in the parietal cortex (area lip) of the rhesus monkey. J. Neurophysiol. 86, 1916–1936 (2001)CrossRefGoogle Scholar
  59. 298.
    M.L. Shik, G.N. Orlovskii, F.V. Severin, Organization of locomotor synergism. Biofizika 11, 879–886 (1966)Google Scholar
  60. 299.
    H. Shimizu, Y. Yamaguchi, Synergetic computer and holonics: information dynamics of a semantic computer. Phys. Scripta 36, 970–985 (1987)ADSCrossRefGoogle Scholar
  61. 312.
    T.A. Stoffregen, C.M. Yang, B.G. Bardy, Affordance judgments and nonlocomotor body movement. Ecol. Psychol. 17, 75–104 (2005)CrossRefGoogle Scholar
  62. 319.
    E.C. Tolman, Cognitive maps in rats and men. Psychol. Rev. 55, 189–208 (1948)CrossRefGoogle Scholar
  63. 326.
    B. Tyldesley, J.I. Grieve, Muscles, Nerves, and Movement — Kinesiology in Daily Living (Blackwell Science, Oxford, 1996)Google Scholar
  64. 329.
    J. van der Kamp, G.J.P. Savelsbergh, W.E. Davis, Body-scaled ratio as a control parameter for prehension in 5- to 9-year old children. Dev. Psychobiol. 33, 351–361 (1998)CrossRefGoogle Scholar
  65. 334.
    V.S. Vorobev, The law of corresponding states for the entropy of rare gases. Chem. Phys. Lett. 383, 359–361 (2004)ADSCrossRefGoogle Scholar
  66. 336.
    J.B. Wagman, A. Hajnal, Getting off on the right (or left) foot: perceiving by means of a rod attached to the preferred or non-preferred foot. Exp. Brain Res. 232, 3591–3599 (2014)CrossRefGoogle Scholar
  67. 337.
    J.B. Wagman, A. Hajnal, Task specificity and anatomical independence in perception of properties by means of wielded object. J. Exp. Psychol. - Hum. Percept. Perform. 40, 2372–2391 (2014)CrossRefGoogle Scholar
  68. 338.
    J.B. Wagman, C.A. Taheny, T. Higuchi, Improvements in perception of maximum reaching height transfer to increases or decreases in reaching ability. Am. J. Psychol. 127, 269–279 (2014)CrossRefGoogle Scholar
  69. 343.
    W.H. Warren, Perceiving affordances: visual guidance of stair climbing. J. Exp. Psychol. - Hum. Percept. Perform. 10, 683–703 (1984)CrossRefGoogle Scholar
  70. 357.
    H. Yokoi, A. Adamatzky, B.L. Costello, Excitable chemical medium controller for a robotic hand: closed-loop experiments. Int. J. Bif. Chaos 14, 3347–3354 (2004)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Till Frank
    • 1
  1. 1.Dept. Psychology and PhysicsUniversity of ConnecticutStorrsUSA

Personalised recommendations