Advertisement

Human Reactions

  • Till Frank
Chapter
Part of the Springer Series in Synergetics book series (SSSYN)

Abstract

In this chapter the first and second laws of classical mechanics will be reviewed. Subsequently, in analogy to those laws, the first and second laws of self-organizing, pattern formation systems will be introduced. These laws suggest to conduct the study of human brain and body activity in a particular order.

References

  1. 1.
    S.D. Aberson, J.B. Halverson, Kelvin-Helmholtz billows in the eyewall of hurricane Erin. Mon. Weather Rev. 134, 1036–1038 (2006)ADSCrossRefGoogle Scholar
  2. 16.
    S. Barbay, G. Giacomelli, F. Marin, Stochastic resonance in vertical cavity surface emitting lasers. Phys. Rev. E 61, 157–166 (2000)ADSGoogle Scholar
  3. 38.
    P.C. Bressloff, J.D. Cowan, M. Golubitsky, P.J. Thomas, M.C. Wiener, Geometric visual hallucinations, Euclidean symmetry and the functional architecture of striate cortex. Phil. Trans. R. Soc. Lond. B 356, 299–330 (2001)zbMATHGoogle Scholar
  4. 39.
    P.C. Bressloff, J.D. Cowan, M. Golubitsky, P.J. Thomas, M.C. Wiener, What geometric visual hallucinations tell us about the visual cortex. Neural Comput. 14, 473–491 (2002)zbMATHGoogle Scholar
  5. 45.
    B. Case, B. Tuller, M. Ding, J.A.S. Kelso, Evaluation of a dynamical model of speech perception. Percept. Psychophys. 57, 977–988 (1995)CrossRefGoogle Scholar
  6. 47.
    D. Cheyne, H. Weinberg, Neuromagnetic fields accompanying unilateral finger movements: pre-movement and movement-evoked fields. Exp. Brain Res. 78, 604–612 (1989)CrossRefGoogle Scholar
  7. 48.
    S. Chiangga, T.D. Frank, Stochastic properties in bistable region of single-transverse-mode vertical-surface emitting lasers. Nonlin. Phenom. Complex Syst. 13, 32–37 (2010)Google Scholar
  8. 59.
    B.N. Cuffin, D. Cohen, Magnetic fields produced by models of biological current sources. J. Appl. Phys. 48, 3971–3980 (1977)ADSCrossRefGoogle Scholar
  9. 61.
    A. Daffertshofer, H. Haken, A new approach to recognition of deformed patterns. Pattern Recogn. 27, 1697–1705 (1994)CrossRefGoogle Scholar
  10. 86.
    T.D. Frank, On a mean field Haken-Kelso-Bunz model and a free energy approach to relaxation processes. Nonlin. Phenom. Complex Syst. 5(4), 332–341 (2002)MathSciNetGoogle Scholar
  11. 88.
    T.D. Frank, Nonlinear Fokker-Planck Equations: Fundamentals and Applications (Springer, Berlin, 2005)zbMATHGoogle Scholar
  12. 95.
    T.D. Frank, New perspectives on pattern recognition algorithm based on Haken’s synergetic computer network, in Perspective on Pattern Recognition ed. by M.D. Fournier, pp. 153–172, Chap. 7 (Nova Publ., New York, 2011)Google Scholar
  13. 97.
    T.D. Frank, Multistable pattern formation systems: candidates for physical intelligence. Ecol. Psychol. 24, 220–240 (2012)Google Scholar
  14. 113.
    T.D. Frank, P.J. Beek, A mean field approach to self-organization in spatially extended perception-action and psychological systems, in The Dynamical Systems Approach to Cognition, ed. by W. Tschacher, J.P. Dauwalder (World Scientific, Singapore, 2003), pp. 159–179CrossRefGoogle Scholar
  15. 116.
    T.D. Frank, A. Daffertshofer, P.J. Beek, H. Haken, Impacts of noise on a field theoretical model of the human brain. Phys. D 127, 233–249 (1999)CrossRefGoogle Scholar
  16. 117.
    T.D. Frank, A. Daffertshofer, C.E. Peper, P.J. Beek, H. Haken, Towards a comprehensive theory of brain activity: coupled oscillator systems under external forces. Phys. D 144, 62–86 (2000)MathSciNetCrossRefGoogle Scholar
  17. 119.
    T.D. Frank, C.E. Peper, A. Daffertshofer, P.J. Beek, Variability of brain activity during rhythmic unimanual finger movements, in Movement System Variability, ed. by K. Davids, S. Bennett, K. Newell (Human Kinetics, Champaign, 2006), pp. 271–305Google Scholar
  18. 125.
    R.W. Frischholz, F.G. Boebel, K.P. Spinner, Face recognition with the synergetic computer, in Proceedings of the First International Conference on Applied Synergetics and Synergetic Engineering (Frauenhofer Institute IIS., Erlangen, 1994), pp. 100–106Google Scholar
  19. 127.
    A. Fuchs, H. Haken, Pattern recognition and associative memory as dynamical processes in a synergetic system. I. Translational invariance, selective attention and decomposition of scene. Biol. Cybern. 60, 17–22 (1988)Google Scholar
  20. 130.
    P. Genevet, S. Barland, M. Giudici, J.R. Tredicce, Stationary localized structures and pulsing structures in cavity soliton lasers. Phys. Rev. A 79, article 033819 (2009)Google Scholar
  21. 131.
    C. Gerloff, C. Toro, N. Uenishi, L.G. Cohen, L. Leocani, M. Hallett, Steady-state movement-related cortical potentials: a new approach to assessing cortical activity associated with fast repetitive finger movements. Electroenceph. Clin. Neurophysiol. 102, 106–113 (1997)CrossRefGoogle Scholar
  22. 132.
    C. Gerloff, N. Uenishi, T. Nagamine, M. Hallett T. Kunieda, H. Shibasaki, Cortical activation during fast repetitive finger movements in humans: steady-state movement-related magnetic fields and their cortical generators. Electroenceph. Clin. Neurophysiol. 109, 444–453 (1998)CrossRefGoogle Scholar
  23. 156.
    H. Haken, Light: Laser Light Dynamics (North Holland, Amsterdam, 1991)Google Scholar
  24. 157.
    H. Haken, Synergetic Computers and Cognition (Springer, Berlin, 1991)CrossRefGoogle Scholar
  25. 160.
    H. Haken, Synergetics: Introduction and Advanced Topics (Springer, Berlin, 2004)CrossRefGoogle Scholar
  26. 175.
    V.K. Jirsa, H. Haken, A field theory of electromagnetic brain activity. Phys. Rev. Lett. 77, 960–963 (1996)ADSCrossRefGoogle Scholar
  27. 176.
    V.K. Jirsa, H. Haken, A derivation of a macroscopic field theory of the brain from the quasi-microscopic neural dynamics. Phys. D 99, 503–526 (1997)CrossRefGoogle Scholar
  28. 197.
    R. Kristeva, D. Cheyne, L. Deecke, Neuromagnetic fields accompanying unilateral and bilateral voluntary movements: topography and analysis of cortical sources. Electroenceph. Clin. Neurophysiol. 81, 284–298 (1991)CrossRefGoogle Scholar
  29. 244.
    B. Nagler, M. Peeters, J. Albert, G. Verschaffelt, K. Panajotov, H. Thiehpont, I. Veretnnicoff, J. Danckaert, S. Barbay, G. Giacomelli, F. Marin, Polarization-mode hopping in single-mode vertical-cavity surface-emitting lasers: theory and experiment. Phys. Rev. A 68, 013813 (2003)ADSCrossRefGoogle Scholar
  30. 254.
    P.L. Nunez, Electric Fields of the Brain (Oxford University Press, New York, 1981)Google Scholar
  31. 263.
    H.G. Purwins, H.U. Bödeker, S. Amiranasvili, Dissipative solitons. Adv. Phys. 59, 485–701 (2010)ADSCrossRefGoogle Scholar
  32. 299.
    H. Shimizu, Y. Yamaguchi, Synergetic computer and holonics: information dynamics of a semantic computer. Phys. Scripta 36, 970–985 (1987)ADSCrossRefGoogle Scholar
  33. 304.
    L. Spinelli, G. Tissoni, M. Brambilla, F. Prati, L.A. Lugiato, Spatial solitons in semiconductor microcavities. Phys. Rev. A 58, 2542–2559 (1998)ADSCrossRefGoogle Scholar
  34. 316.
    Y.B. Taranenko, I. Ganne, R.J. Kuszelewicz, C.O. Weiss, Patterns and localized structures in bistable semiconductor resonators. Phys. Rev. A 61, article 063818 (2000)Google Scholar
  35. 325.
    B. Tuller, P. Case, M. Ding, J.A.S. Kelso, The nonlinear dynamics of speech recognition. J. Exp. Psychol. - Hum. Percept. Perform. 20, 3–16 (1994)CrossRefGoogle Scholar
  36. 335.
    M.A. Vorontsov, A.Y. Karpov, Simulated optical patterns in a Kerr slice-feedback mirror-type experiment. J. Modern Opt. 44, 439–446 (1997)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Till Frank
    • 1
  1. 1.Dept. Psychology and PhysicsUniversity of ConnecticutStorrsUSA

Personalised recommendations