Advertisement

From Self-Organizing Systems to Pattern Formation Systems

  • Till Frank
Chapter
Part of the Springer Series in Synergetics book series (SSSYN)

Abstract

In this chapter and the following chapter fundamental concepts of the theory of pattern formation and synergetics will be introduced. The goal of this chapter is to clarify the notion of self-organizing systems and pattern formation systems. It will be shown that while it is difficult to arrive at a clear definition of self-organizing systems, pattern formation systems can be defined in a precise way. With the definition of pattern formation systems at hand, this chapter provides a basis for understanding humans and animals from a pattern formation perspective.

References

  1. 4.
    C. Allain, H.C. Cummins, P. Lallemand, Critical slowing down near the Rayleigh-Benard convection instability. Le J. de Phys. Lett. 24, L474–L477 (1978)Google Scholar
  2. 14.
    A. Bakonyi, D. Michaelis, U. Peschel, G. Onishchukov, F. Lederer, Dissipative solitons and their critical slowing down near a supercritical bifurcation. J. Opt. Soc. Am. B 19, 487–491 (2002)ADSCrossRefGoogle Scholar
  3. 19.
    P.J. Beek, R.C. Schmidt, A.W. Morris, M.-Y. Sim, M.T. Turvey, Linear and nonlinear stiffness and friction in biological rhythmic movements. Biol. Cybern. 73, 499–507 (1995)CrossRefGoogle Scholar
  4. 25.
    J.J. Binnen, N.J. Dowrick, A.J. Fisher, M.E.J. Newman, The Theory of Critical Phenomena (Oxford University Press, New York, 1992)Google Scholar
  5. 28.
    H.U. Bödeker, T.D. Frank, R. Friedrich, H.G. Purwins, Stochastic dynamics of dissipative solitons in gas-discharge systems, in Anomalous Fluctuation Phenomena in Complex Systems: Plasmas, Fluids and Financial Markets ed. by C. Riccardi, H.E. Roman (Research Signpost, Trivandrum, 2008), pp. 145–184Google Scholar
  6. 70.
    D.G. Dotov, T.D. Frank, From the W-method to the canonical-dissipative method for studying uni-manual rhythmic behavior. Motor Control 15, 550–567 (2011)CrossRefGoogle Scholar
  7. 77.
    W. Ebeling, I.M. Sokolov, Statistical Thermodynamics and Stochastic Theory of Nonequilibrium Systems (World Scientific, Singapore, 2004)zbMATHGoogle Scholar
  8. 78.
    R.E. Ecke, H. Haucke, Y. Maeno, J.C. Wheatley, Critical dynamics at a Hopf bifurcation to oscillatory Rayleigh-Benard convection. Phys. Rev. A 33, 1870–1878 (1986)ADSCrossRefGoogle Scholar
  9. 88.
    T.D. Frank, Nonlinear Fokker-Planck Equations: Fundamentals and Applications (Springer, Berlin, 2005)zbMATHGoogle Scholar
  10. 92.
    T.D. Frank, On a moment-based data analysis method for canonical-dissipative oscillator systems. Fluctuation Noise Lett. 9, 69–87 (2010)CrossRefGoogle Scholar
  11. 93.
    T.D. Frank, Pumping and entropy production in non-equilibrium drift-diffusion systems: a canonical-dissipative approach. Eur. J. Sci. Res. 46, 136–146 (2010)Google Scholar
  12. 97.
    T.D. Frank, Multistable pattern formation systems: candidates for physical intelligence. Ecol. Psychol. 24, 220–240 (2012)CrossRefGoogle Scholar
  13. 122.
    T.D. Frank, V.L.S. Profeta, H. Harrison, Interplay between order parameter and system parameter dynamics: considerations on perceptual-cognitive-behavioral mode-mode transitions exhibiting positive and negative hysteresis and response times. J. Biol. Phys. 41, 257–292 (2015)CrossRefGoogle Scholar
  14. 143.
    T.M. Griffin, R. Kram, S.J. Wickler, D.F. Hoyt, Biomechanical and energetic determinants of the walk-trot transition in horses. J. Exp. Biol. 207, 4215–4223 (2004)CrossRefGoogle Scholar
  15. 148.
    S.J. Guastello, Chaos, Catastrophe, and Human Affairs (Lawrence Erlbaum, Mahwah, 1995)Google Scholar
  16. 149.
    J. Guckenheimer, P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields (Springer, Berlin, 1983)CrossRefGoogle Scholar
  17. 151.
    H. Haken, Distribution function for classical and quantum systems far from thermal equilibrium. Z. Phys. 263, 267–282 (1973)ADSMathSciNetCrossRefGoogle Scholar
  18. 158.
    H. Haken, Principles of Brain Functioning (Springer, Berlin, 1996)CrossRefGoogle Scholar
  19. 160.
    H. Haken, Synergetics: Introduction and Advanced Topics (Springer, Berlin, 2004)CrossRefGoogle Scholar
  20. 166.
    D.F. Hoyt, C.R. Taylor, Gait and energetics of locomotion in horses. Nature 292, 239–240 (1981)ADSCrossRefGoogle Scholar
  21. 174.
    A. Jenkins, Self-oscillations. Phys. Rep. 525, 167–222 (2013)ADSMathSciNetCrossRefGoogle Scholar
  22. 180.
    B.A. Kay, J.A.S. Kelso, E.L. Saltzman, G. Schöner, The space-time behavior of single and bimanual movements: data and model. J. Exp. Psychol. - Hum. Percept. Perform. 13, 178–192 (1987)CrossRefGoogle Scholar
  23. 182.
    J.A.S. Kelso, Dynamic Patterns - The Self-Organization of Brain and Behavior (MIT Press, Cambridge, 1995)Google Scholar
  24. 204.
    M.D. Kuzmin, Shape of temperature dependence of spontaneous magnetization of ferromagnets: quantitative analysis. Phys. Rev. Lett. 94, article 107204 (2005)Google Scholar
  25. 212.
    J. Liu, G. Ahlers, Spiral-defect chaos in Rayleigh-Benard convection with small Prandtl numbers. Phys. Rev. Lett. 77, 3126–3129 (1996)ADSCrossRefGoogle Scholar
  26. 215.
    S.M. Lopresti-Goodman, M.T. Turvey, T.D. Frank, Behavioral dynamics of the affordance “graspable”. Atten. Percept. Psychophys. 73, 1948–1965 (2011)CrossRefGoogle Scholar
  27. 239.
    S. Mongkolsakulvong, T.D. Frank, Synchronization and anchoring of two non-harmonic canonical-dissipative oscillators via Smorodinsky-Winternitz potentials. Condens. Matter Phys. 20, article 44001 (2017)CrossRefGoogle Scholar
  28. 251.
    L.K. Nguyen, M.A.S. Cavadas, B.N. Kholodenko, T.D. Frank, A. Cheong, Species differential regulation of cox2 can be described by nfkb-dependent logic and gate. Cell. Mol. Life Sci. 72, 2431–2443 (2014)CrossRefGoogle Scholar
  29. 252.
    G. Nicolis, Introduction to Nonlinear Sciences (Cambridge University Press, Cambridge, 1995)CrossRefGoogle Scholar
  30. 253.
    A. Nitzan, P. Ortoleva, J. Deutch, J. Ross, Fluctuations and transitions at chemical instabilities: the analogy to phase transition. J. Chem. Phys. 61, 1056–1074 (1974)ADSCrossRefGoogle Scholar
  31. 267.
    J.W. Rayleigh, Theory of Sound (Dover, New York, 1945). First edition published 1894Google Scholar
  32. 274.
    P. Romanczuk, M. Bär, W. Ebeling, B. Lindner, L. Schimansky-Geier, Active Brownian particles: from individual to collective stochastic dynamics. Eur. Phys. J. Special Topics 202, 1–162 (2012)ADSCrossRefGoogle Scholar
  33. 281.
    R.C. Schmidt, C. Carello, M.T. Turvey, Phase transitions and critical fluctuations in the visual coordination of rhythmic movements between people. J. Exp. Psychol. - Hum. Percept. Perform. 53, 247–257 (1990)Google Scholar
  34. 285.
    J.P. Scholz, J.A.S. Kelso, G.S. Schöner, Non-equilibrium phase transitions in coordinated biological motion: critical slowing down and switching time. Phys. Lett. A 123, 390–394 (1987)ADSCrossRefGoogle Scholar
  35. 295.
    W. Sha, J. Moore, K. Chen, A.D. Lassaletta, C.S. Yi, J.J. Tyson, J.C. Silbe. Hysteresis drives cell-cycle transitions in Xenopus laevis egg extracts. Proc. Natl. Acad. Sci. USA 93, 628–633 (2003)Google Scholar
  36. 303.
    D. Sornette, Critical Phenomena in Natural Science (Springer, Berlin, 2000)CrossRefGoogle Scholar
  37. 305.
    H.E. Stanley, Introduction to Phase Transitions and Critical Phenomena (Oxford University Press, New York, 1971)Google Scholar
  38. 333.
    F. Verhulst, Nonlinear Differential Equations and Dynamical Systems, 2nd ed. (Springer, Berlin, 1996)CrossRefGoogle Scholar
  39. 339.
    G.V. Wallenstein, J.A.S. Kelso, S.L. Bressler, Phase transitions in spatiotemporal patterns of brain activity and behavior. Phys. D 84, 626–634 (1995)CrossRefGoogle Scholar
  40. 340.
    L. Wang, B.L. Walker, S. Iannaccone, D. Bhatt, P.J. Kennedy, W.T. Tse, Bistable switches control memory and plasticity in cellular differentiation. Proc. Natl. Acad. Sci. USA 106, 6638–6643 (2009)ADSCrossRefGoogle Scholar
  41. 349.
    J. Wesfreid, Y. Pomeau, M. Dubois, C. Normand, P. Berge, Critical effects in Rayleig-Benard convection. Le J. de Phys. Lett. 7, 726–731 (1978)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Till Frank
    • 1
  1. 1.Dept. Psychology and PhysicsUniversity of ConnecticutStorrsUSA

Personalised recommendations