Advertisement

Critical Exponent of Infinite Balanced Words via the Pell Number System

  • Aseem R. BaranwalEmail author
  • Jeffrey Shallit
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11682)

Abstract

In a recent paper of Rampersad et al., the authors conjectured that the smallest possible critical exponent of an infinite balanced word over a 5-letter alphabet is 3/2. We prove this result, using a formulation of first-order logic, the Pell number system, and a machine computation based on finite-state automata.

Keywords

Critical exponent Balanced word Automatic theorem-proving 

Notes

Acknowledgments

We thank Narad Rampersad and Luke Schaeffer for their helpful comments. We are also grateful to the referees who read the paper and offered many useful suggestions.

References

  1. 1.
    Allouche, J.P., Shallit, J.: Automatic Sequences. Cambridge University Press, Cambridge (2003)Google Scholar
  2. 2.
    Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput. 75(2), 87–106 (1987)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Berstel, J., Séébold, P.: Sturmian words. In: Lothaire, M. (ed.) Algebraic Combinatorics on Words, Encyclopedia of Mathematics and Its Applications, vol. 30, Chap. 2, pp. 45–110. Cambridge University Press, Cambridge (2002)Google Scholar
  4. 4.
    Brzozowski, J.A.: Derivatives of regular expressions. J. ACM 11(4), 481–494 (1964)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Du, C.F., Mousavi, H., Schaeffer, L., Shallit, J.: Decision algorithms for Fibonacci automatic words, III: enumeration and abelian properties. Int. J. Found. Comput. Sci. 27(8), 943–963 (2016)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Hieronymi, P., Terry, A.: Ostrowski numeration systems, addition, and finite automata. Notre Dame J. Formal Logic 59(2), 215–232 (2018)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Hubert, P.: Suites équilibrées. Theoret. Comput. Sci. 242(1–2), 91–108 (2000)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Mousavi, H.: Automatic theorem proving in Walnut. Preprint: https://arxiv.org/abs/1603.06017 (2016)
  9. 9.
    Mousavi, H., Schaeffer, L., Shallit, J.: Decision algorithms for Fibonacci-automatic words, I: basic results. RAIRO Inform. Théor. App. 50(1), 39–66 (2016)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Nerode, A.: Linear automaton transformations. Proc. Am. Math. Soc. 9(4), 541–544 (1958)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Ostrowski, A.: Bemerkungen zur Theorie der diophantischen Approximationen. Abh. Math. Semin. Univ. Hamburg 1(1), 77–98 (1922)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Rampersad, N., Shallit, J., Vandomme, E.: Critical exponents of infinite balanced words. Theoret. Comput. Sci. (2018).  https://doi.org/10.1016/j.tcs.2018.10.017CrossRefzbMATHGoogle Scholar
  13. 13.
    Sloane, N.J.A., et al.: The on-line encyclopedia of integer sequences (2018). https://oeis.org
  14. 14.
    Vuillon, L.: Balanced words. Bull. Belgian Math. Soc. 10(5), 787–805 (2003)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of Computer ScienceUniversity of WaterlooWaterlooCanada

Personalised recommendations