Advertisement

Matching Patterns with Variables

  • Florin ManeaEmail author
  • Markus L. Schmid
Conference paper
  • 102 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11682)

Abstract

A pattern \(\alpha \) (i. e., a string of variables and terminals) matches a word w, if w can be obtained by uniformly replacing the variables of \(\alpha \) by terminal words. The respective matching problem, i. e., deciding whether or not a given pattern matches a given word, is generally Open image in new window -complete, but can be solved in polynomial-time for classes of patterns with restricted structure. In this paper we overview a series of recent results related to efficient matching for patterns with variables, as well as a series of extensions of this problem.

Keywords

Combinatorial pattern matching Patterns with variables String structural parameters Efficient algorithms NP-hardness 

References

  1. 1.
    Amir, A., Nor, I.: Generalized function matching. J. Discrete Algorithms 5, 514–523 (2007)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Angluin, D.: Finding patterns common to a set of strings. J. Comput. Syst. Sci. 21, 46–62 (1980)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Baker, B.S.: Parameterized pattern matching: algorithms and applications. J. Comput. Syst. Sci. 52, 28–42 (1996)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bannai, H., I, T., Inenaga, S., Nakashima, Y., Takeda, M., Tsuruta, K.: The “runs” theorem. SIAM J. Comput. 46(5), 1501–1514 (2017)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Barceló, P., Libkin, L., Lin, A.W., Wood, P.T.: Expressive languages for path queries over graph-structured data. ACM Trans. Database Syst. 37, 31 (2012)CrossRefGoogle Scholar
  6. 6.
    Barrett, C., et al.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-22110-1_14CrossRefGoogle Scholar
  7. 7.
    Bodlaender, H.L.: A tourist guide through treewidth. Acta Cybern. 11(1–2), 1–21 (1993)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM J. Comput. 25(5), 1305–1317 (1996).  https://doi.org/10.1137/s0097539793251219MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Bodlaender, H.L.: A partial k-arboretum of graphs with bounded treewidth. Theor. Comput. Sci. 209(1–2), 1–45 (1998).  https://doi.org/10.1016/S0304-3975(97)00228-4MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Bodlaender, H.L.: Fixed-parameter tractability of treewidth and pathwidth. In: Bodlaender, H.L., Downey, R., Fomin, F.V., Marx, D. (eds.) The Multivariate Algorithmic Revolution and Beyond. LNCS, vol. 7370, pp. 196–227. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-30891-8_12CrossRefGoogle Scholar
  11. 11.
    Bringmann, K.: Fine-grained complexity theory (tutorial). In: Niedermeier, R., Paul, C. (eds.) 36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019). Leibniz International Proceedings in Informatics (LIPIcs), vol. 126, pp. 4:1–4:7. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl (2019).  https://doi.org/10.4230/LIPIcs.STACS.2019.4. http://drops.dagstuhl.de/opus/volltexte/2019/10243
  12. 12.
    Câmpeanu, C., Salomaa, K., Yu, S.: A formal study of practical regular expressions. Int. J. Found. Comput. Sci. 14, 1007–1018 (2003)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Casel, K., Day, J.D., Fleischmann, P., Kociumaka, T., Manea, F., Schmid, M.L.: Graph and string parameters: connections between pathwidth, cutwidth and the locality number. CoRR, to appear in Proceedings of the ICALP 2019, abs/1902.10983 (2019). http://arxiv.org/abs/1902.10983
  14. 14.
    Crochemore, M.: An optimal algorithm for computing the repetitions in a word. Inf. Process. Lett. 12(5), 244–250 (1981)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Day, J.D., Fleischmann, P., Manea, F., Nowotka, D.: Local patterns. In: 37th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2017, pp. 24:1–24:14 (2017)Google Scholar
  16. 16.
    Day, J.D., Fleischmann, P., Manea, F., Nowotka, D., Schmid, M.L.: On matching generalised repetitive patterns. In: Hoshi, M., Seki, S. (eds.) DLT 2018. LNCS, vol. 11088, pp. 269–281. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-98654-8_22CrossRefGoogle Scholar
  17. 17.
    Day, J.D., Ganesh, V., He, P., Manea, F., Nowotka, D.: The satisfiability of word equations: decidable and undecidable theories. In: Potapov, I., Reynier, P.-A. (eds.) RP 2018. LNCS, vol. 11123, pp. 15–29. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-00250-3_2CrossRefGoogle Scholar
  18. 18.
    Day, J.D., Manea, F., Nowotka, D.: The hardness of solving simple word equations. In: Proceedings of the MFCS 2017. LIPIcs, vol. 83, pp. 18:1–18:14 (2017)Google Scholar
  19. 19.
    Da̧browski, R., Plandowski, W.: Solving two-variable word equations. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 408–419. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-27836-8_36CrossRefGoogle Scholar
  20. 20.
    Díaz, J., Petit, J., Serna, M.: A survey of graph layout problems. ACM Comput. Surv. 34(3), 313–356 (2002).  https://doi.org/10.1145/568522.568523CrossRefGoogle Scholar
  21. 21.
    Diekert, V., Jez, A., Kufleitner, M.: Solutions of word equations over partially commutative structures. In: Proceedings of the 43rd International Colloquium on Automata, Languages, and Programming, ICALP 2016. Leibniz International Proceedings in Informatics (LIPIcs), vol. 55, pp. 127:1–127:14 (2016)Google Scholar
  22. 22.
    Robson, J.M., Diekert, V.: On quadratic word equations. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 217–226. Springer, Heidelberg (1999).  https://doi.org/10.1007/3-540-49116-3_20CrossRefGoogle Scholar
  23. 23.
    Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. TCS. Springer, London (2013).  https://doi.org/10.1007/978-1-4471-5559-1CrossRefzbMATHGoogle Scholar
  24. 24.
    Erlebach, T., Rossmanith, P., Stadtherr, H., Steger, A., Zeugmann, T.: Learning one-variable pattern languages very efficiently on average, in parallel, and by asking queries. Theoret. Comput. Sci. 261, 119–156 (2001)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Feige, U., HajiAghayi, M., Lee, J.R.: Improved approximation algorithms for minimum weight vertex separators. SIAM J. Comput. 38(2), 629–657 (2008).  https://doi.org/10.1137/05064299xMathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Fernau, H., Manea, F., Mercas, R., Schmid, M.L.: Pattern matching with variables: fast algorithms and new hardness results. In: 32nd International Symposium on Theoretical Aspects of Computer Science, STACS 2015, pp. 302–315 (2015)Google Scholar
  27. 27.
    Fernau, H., Manea, F., Mercas, R., Schmid, M.L.: Revisiting Shinohara’s algorithm for computing descriptive patterns. Theoret. Comput. Sci. 733, 44–54 (2018)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Fernau, H., Schmid, M.L.: Pattern matching with variables: a multivariate complexity analysis. In: Fischer, J., Sanders, P. (eds.) CPM 2013. LNCS, vol. 7922, pp. 83–94. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-38905-4_10CrossRefzbMATHGoogle Scholar
  29. 29.
    Fernau, H., Schmid, M.L.: Pattern matching with variables: a multivariate complexity analysis. Inf. Comput. 242, 287–305 (2015)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Fernau, H., Schmid, M.L., Villanger, Y.: On the parameterised complexity of string morphism problems. In: Proceedings of the 33rd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science, FSTTCS. Leibniz International Proceedings in Informatics (LIPIcs), vol. 24, pp. 55–66 (2013)Google Scholar
  31. 31.
    Fernau, H., Schmid, M.L., Villanger, Y.: On the parameterised complexity of string morphism problems. Theory Comput. Syst. 59(1), 24–51 (2016)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Flum, J., Grohe, M.: Parameterized Complexity Theory. TTCSAES. Springer, Heidelberg (2006).  https://doi.org/10.1007/3-540-29953-XCrossRefzbMATHGoogle Scholar
  33. 33.
    Freydenberger, D.D.: A logic for document spanners. In: Proceedings of the 20th International Conference on Database Theory, ICDT 2017. Leibniz International Proceedings in Informatics (LIPIcs)Google Scholar
  34. 34.
    Freydenberger, D.D., Holldack, M.: Document spanners: from expressive power to decision problems. Theory Comput. Syst. 62(4), 854–898 (2018)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Freydenberger, D.D.: Extended regular expressions: succinctness and decidability. Theory Comput. Syst. 53, 159–193 (2013)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Freydenberger, D.D., Reidenbach, D.: Bad news on decision problems for patterns. Inf. Comput. 208(1), 83–96 (2010)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Freydenberger, D.D., Reidenbach, D.: Existence and nonexistence of descriptive patterns. Theor. Comput. Sci. 411(34–36), 3274–3286 (2010)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Freydenberger, D.D., Reidenbach, D.: Inferring descriptive generalisations of formal languages. J. Comput. Syst. Sci. 79(5), 622–639 (2013)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Friedl, J.E.F.: Mastering Regular Expressions, 3rd edn. O’Reilly, Sebastopol (2006)Google Scholar
  40. 40.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1979)zbMATHGoogle Scholar
  41. 41.
    Gawrychowski, P., Manea, F., Nowotka, D.: Testing generalised freeness of words. In: STACS 2014. LIPIcs, vol. 25, pp. 337–349. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2014)Google Scholar
  42. 42.
    Gawrychowski, P., I, T., Inenaga, S., Köppl, D., Manea, F.: Tighter bounds and optimal algorithms for all maximal \(\alpha \)-gapped repeats and palindromes - finding all maximal \(\alpha \)-gapped repeats and palindromes in optimal worst case time on integer alphabets. Theory Comput. Syst. 62(1), 162–191 (2018)Google Scholar
  43. 43.
    Gawrychowski, P., Manea, F., Mercas, R., Nowotka, D.: Hide and seek with repetitions. J. Comput. Syst. Sci. 101, 42–67 (2019).  https://doi.org/10.1016/j.jcss.2018.10.004MathSciNetCrossRefGoogle Scholar
  44. 44.
    Gawrychowski, P., Manea, F., Mercas, R., Nowotka, D., Tiseanu, C.: Finding pseudo-repetitions. In: 30th International Symposium on Theoretical Aspects of Computer Science, STACS 2013, Kiel, Germany, 27 February-2 March 2013. LIPIcs, vol. 20, pp. 257–268 (2013)Google Scholar
  45. 45.
    Geilke, M., Zilles, S.: Learning relational patterns. In: Kivinen, J., Szepesvári, C., Ukkonen, E., Zeugmann, T. (eds.) ALT 2011. LNCS (LNAI), vol. 6925, pp. 84–98. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-24412-4_10CrossRefzbMATHGoogle Scholar
  46. 46.
    Halfon, S., Schnoebelen, P., Zetzsche, G.: Decidability, complexity, and expressiveness of first-order logic over the subword ordering. In: Proceedings of the 32nd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2017, pp. 1–12. IEEE Computer Society (2017)Google Scholar
  47. 47.
    Ibarra, O.H., Pong, T.C., Sohn, S.M.: A note on parsing pattern languages. Pattern Recogn. Lett. 16, 179–182 (1995)CrossRefGoogle Scholar
  48. 48.
    Jaffar, J.: Minimal and complete word unification. J. ACM 37(1), 47–85 (1990)MathSciNetCrossRefGoogle Scholar
  49. 49.
    Jeż, A.: Context unification is in PSPACE. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8573, pp. 244–255. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-43951-7_21CrossRefGoogle Scholar
  50. 50.
    Jeż, A.: One-variable word equations in linear time. Algorithmica 74, 1–48 (2016)MathSciNetCrossRefGoogle Scholar
  51. 51.
    Jeż, A.: Recompression: a simple and powerful technique for word equations. J. ACM 63, 4 (2016)MathSciNetCrossRefGoogle Scholar
  52. 52.
    Jiang, T., Salomaa, A., Salomaa, K., Yu, S.: Decision problems for patterns. J. Comput. Syst. Sci. 50(1), 53–63 (1995)MathSciNetCrossRefGoogle Scholar
  53. 53.
    Karhumäki, J., Plandowski, W., Mignosi, F.: The expressibility of languages and relations by word equations. J. ACM 47, 483–505 (2000)MathSciNetCrossRefGoogle Scholar
  54. 54.
    Kärkkäinen, J., Sanders, P., Burkhardt, S.: Linear work suffix array construction. J. ACM 53, 918–936 (2006)MathSciNetCrossRefGoogle Scholar
  55. 55.
    Kearns, M.J., Pitt, L.: A polynomial-time algorithm for learning k-variable pattern languages from examples. In: Proceedings of the Second Annual Workshop on Computational Learning Theory, COLT 1989, Santa Cruz, CA, USA, 31 July–2 August 1989, pp. 57–71 (1989)Google Scholar
  56. 56.
    Kloks, T. (ed.): Treewidth, Computations and Approximations. LNCS, vol. 842. Springer, Heidelberg (1994).  https://doi.org/10.1007/BFb0045375CrossRefzbMATHGoogle Scholar
  57. 57.
    Kolpakov, R., Kucherov, G.: Searching for gapped palindromes. Theor. Comput. Sci. 410(51), 5365–5373 (2009)MathSciNetCrossRefGoogle Scholar
  58. 58.
    Kolpakov, R., Podolskiy, M., Posypkin, M., Khrapov, N.: Searching of gapped repeats and subrepetitions in a word. In: Kulikov, A.S., Kuznetsov, S.O., Pevzner, P. (eds.) CPM 2014. LNCS, vol. 8486, pp. 212–221. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-07566-2_22CrossRefGoogle Scholar
  59. 59.
    Kosolobov, D., Manea, F., Nowotka, D.: Detecting one-variable patterns. In: Proceedings of the 24th International Symposium on String Processing and Information Retrieval , SPIRE 2017, Palermo, Italy, 26–29 September 2017, pp. 254–270 (2017)CrossRefGoogle Scholar
  60. 60.
    Leighton, T., Rao, S.: Multicommodity max-flow min-cut theorems and their use in designing approximation algorithms. J. ACM 46(6), 787–832 (1999).  https://doi.org/10.1145/331524.331526MathSciNetCrossRefzbMATHGoogle Scholar
  61. 61.
    Lin, A.W., Majumdar, R.: Quadratic word equations with length constraints, counter systems, and presburger arithmetic with divisibility. In: Lahiri, S.K., Wang, C. (eds.) ATVA 2018. LNCS, vol. 11138, pp. 352–369. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-01090-4_21CrossRefGoogle Scholar
  62. 62.
    Lothaire, M.: Combinatorics on Words. Cambridge University Press, Cambridge (1997)CrossRefGoogle Scholar
  63. 63.
    Lothaire, M.: Algebraic Combinatorics on Words, chap. 3. Cambridge University Press, Cambridge, New York (2002)Google Scholar
  64. 64.
    Lothaire, M.: Algebraic Combinatorics on Words. Cambridge University Press, Cambridge, New York (2002)CrossRefGoogle Scholar
  65. 65.
    Lyndon, R.C.: Equations in free groups. Trans. Am. Math. Soc. 96, 445–457 (1960)MathSciNetCrossRefGoogle Scholar
  66. 66.
    Lyndon, R.C., Schupp, P.E.: Combinatorial Group Theory. Springer, Heidelberg (1977)zbMATHGoogle Scholar
  67. 67.
    Makanin, G.S.: The problem of solvability of equations in a free semigroup. Matematicheskii Sbornik 103, 147–236 (1977)MathSciNetzbMATHGoogle Scholar
  68. 68.
    Manea, F., Nowotka, D., Schmid, M.L.: On the solvability problem for restricted classes of word equations. In: Brlek, S., Reutenauer, C. (eds.) DLT 2016. LNCS, vol. 9840, pp. 306–318. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53132-7_25CrossRefGoogle Scholar
  69. 69.
    Mateescu, A., Salomaa, A.: Finite degrees of ambiguity in pattern languages. RAIRO Inf. Théor. Appl. 28, 233–253 (1994)MathSciNetCrossRefGoogle Scholar
  70. 70.
    Mateescu, A., Salomaa, A.: Aspects of classical language theory. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, pp. 175–251. Springer, Heidelberg (1997).  https://doi.org/10.1007/978-3-642-59136-5_4CrossRefGoogle Scholar
  71. 71.
    Ng, Y.K., Shinohara, T.: Developments from enquiries into the learnability of the pattern languages from positive data. Theoret. Comput. Sci. 397, 150–165 (2008)MathSciNetCrossRefGoogle Scholar
  72. 72.
    Ordyniak, S., Popa, A.: A parameterized study of maximum generalized pattern matching problems. Algorithmica 75, 1–26 (2016)MathSciNetCrossRefGoogle Scholar
  73. 73.
    Petit, J.: Addenda to the survey of layout problems. Bull. EATCS 105, 177–201 (2011). http://eatcs.org/beatcs/index.php/beatcs/article/view/98
  74. 74.
    Plandowski, W.: An efficient algorithm for solving word equations. In: Proceedings of the 38th Annual ACM Symposium on Theory of Computing, STOC 2006, pp. 467–476 (2006)Google Scholar
  75. 75.
    Reidenbach, D.: A non-learnable class of e-pattern languages. Theor. Comput. Sci. 350(1), 91–102 (2006)MathSciNetCrossRefGoogle Scholar
  76. 76.
    Reidenbach, D.: An examination of ohlebusch and ukkonen’s conjecture on the equivalence problem for e-pattern languages. J. Automata Lang. Comb. 12(3), 407–426 (2007)MathSciNetzbMATHGoogle Scholar
  77. 77.
    Reidenbach, D.: Discontinuities in pattern inference. Theor. Comput. Sci. 397(1–3), 166–193 (2008) MathSciNetCrossRefGoogle Scholar
  78. 78.
    Reidenbach, D., Schmid, M.L.: Patterns with bounded treewidth. Inf. Comput. 239, 87–99 (2014)MathSciNetCrossRefGoogle Scholar
  79. 79.
    Schmid, M.L.: A note on the complexity of matching patterns with variables. Inf. Process. Lett. 113(19–21), 729–733 (2013)MathSciNetCrossRefGoogle Scholar
  80. 80.
    Schulz, K.U.: Word unification and transformation of generalized equations. J. Autom. Reason. 11, 149–184 (1995)MathSciNetCrossRefGoogle Scholar
  81. 81.
    Shinohara, T.: Polynomial time inference of pattern languages and its application. In: Proceedings of 7th IBM Symposium on Mathematical Foundations of Computer Science, MFCS, pp. 191–209 (1982)Google Scholar
  82. 82.
    Thilikos, D.M., Serna, M.J., Bodlaender, H.L.: Cutwidth I: a linear time fixed parameter algorithm. J. Algorithms 56(1), 1–24 (2005).  https://doi.org/10.1016/j.jalgor.2004.12.001MathSciNetCrossRefzbMATHGoogle Scholar
  83. 83.
    Zheng, Y., Ganesh, V., Subramanian, S., Tripp, O., Berzish, M., Dolby, J., Zhang, X.: Z3str2: an efficient solver for strings, regular expressions, and length constraints. Formal Methods Syst. Des. 50(2–3), 249–288 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Kiel UniversityKielGermany
  2. 2.Trier UniversityTrierGermany

Personalised recommendations