Advertisement

Dysbiosis of the Oral Microbiome

  • Apoena A. RibeiroEmail author
  • Roland R. Arnold
Chapter

Abstract

The oral cavity is influenced by the dietary characteristics of each individual. It is in the oral cavity that food will cause the first impact within the human body and its microbiome, due to its composition and consistency. On the other hand, the oral microbiome will affect food processing and impact the human gut microbiome, since bacterial biofilm that is processed within saliva forms the food bolus, which will then be swallowed. The mouth is one of the most heavily colonized parts of our bodies and its microbiome consists of microorganisms that live in symbiosis with healthy individuals who have adequate dietary and oral hygiene habits. Nevertheless, perturbations in the microbiome due to certain stress factors, such as high carbohydrate intake and biofilm accumulation, can lead to dysbiosis and the development of oral diseases. The most prevalent diseases in the oral cavity are dental caries and periodontal diseases including gingivitis and periodontitis, but endodontic (pulp) and soft tissue infections are also prevalent. Thus, this chapter will describe the influence of dietary habits on the oral microbiome, the development of prevalent oral diseases, and their relation to the gut microbiome.

Keywords

Oral microbiome dysbiosis Dental caries Streptococcus Endodontic infection Periodontal disease 

References

  1. Aas, J. A., Paster, B. J., Stokes, L. N., Olsen, I., & Dewhirst, F. E. (2005). Defining the normal bacterial flora of the oral cavity. Journal of Clinical Microbiology, 43, 5721–5732.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Aas, J. A., Griffen, A. L., Dardis, S. R., Lee, A. M., Olsen, I., Dewhirst, F. E., Leys, E. J., & Paster, B. J. (2008). Bacteria of dental caries in primary and permanent teeth in children and young adults. Journal of Clinical Microbiology, 46, 1407–1417.  https://doi.org/10.1128/JCM.01410-07.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Alaluusua, S., Mättö, J., Grönroos, L., et al. (1996). Oral colonization by more than one clonal type of mutans streptococcus in children with nursing-bottle dental caries. Archives of Oral Biology, 41, 167–173.PubMedCrossRefGoogle Scholar
  4. Arimatsu, K., Yamada, H., Miyazawa, H., et al. (2014). Oral pathobiont induces systemic inflammation and metabolic changes associated with alteration of gut microbiota. Scientific Reports, 4, 4828.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Armitage, G. C. (2004). Periodontal diagnoses and classification of periodontal diseases. Periodontology 2000, 34, 9–21.PubMedCrossRefGoogle Scholar
  6. Avila, W. M., Pordeus, I. A., Paiva, S. M., & Martins, C. C. (2015). Breast and bottle feeding as risk factors for dental caries: A systematic review and meta-analysis. PLoS One, 10, e0142922.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Bagramian, R. A., Garcia-Godoy, F., & Volpe, A. R. (2009). The global increase in dental caries. A pending public health crisis. American Journal of Dentistry, 22, 3–8.PubMedGoogle Scholar
  8. Banas, J. A., & Vickerman, M. M. (2003). Glucan-binding proteins of the oral streptococci. Critical Reviews in Oral Biology and Medicine, 14, 89–99. PMID: 12764072.PubMedCrossRefGoogle Scholar
  9. Baumgartner, S., Imfeld, T., Schicht, O., Rath, C., Persson, R. E., & Persson, G. R. (2009). The impact of the stone age diet on gingival conditions in the absence of oral hygiene. Journal of Periodontology, 80, 759–768.PubMedCrossRefGoogle Scholar
  10. Becker, M. R., Paster, B. J., Leys, E. J., et al. (2002). Molecular analysis of bacterial species associated with childhood caries. Journal of Clinical Microbiology, 40, 1001–1009.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Beighton, D., Adamson, A., & Rugg-Gunn, A. (1996). Associations between dietary intake, dental caries experience and salivary bacterial levels in 12-year-oldEnglish schoolchildren. Archives of Oral Biology, 41(3), 271–280.PubMedCrossRefGoogle Scholar
  12. Belda-Ferre, P., Alcaraz, L. D., Cabrera-Rubio, R., Romero, H., Simón-Soro, A., Pignatelli, M., & Mira, A. (2012). The oral metagenome in health and disease. ISME Journal, 6(1), 46–56.PubMedCrossRefGoogle Scholar
  13. Belstrøm, D., Paster, B. J., Fiehn, N.-E., Bardow, A., & Holmstrup, P. (2016). Salivary bacterial fingerprints of established oral disease revealed by the Human Oral Microbe Identification using Next Generation Sequencing (HOMINGS) technique. Journal of Oral Microbiology, 8, 30170.  https://doi.org/10.3402/jom.v8.30170.CrossRefPubMedGoogle Scholar
  14. Benítez-Páez, A., Belda-Ferre, P., Simón-Soro, A., & Mira, A. (2014). Microbiota diversity and gene expression dynamics in human oral biofilms. BMC Genomics, 15, 311.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Bik, E. M., Long, C. D., Armitage, G. C., et al. (2010). Bacterial diversity in the oral cavity of 10 healthy individuals. ISME Journal, 4, 962–974.PubMedCrossRefGoogle Scholar
  16. Bosshardt, D. D., & Lang, N. P. (2005). The junctional epithelium: From health to disease. Journal of Dental Research, 84, 9–20.PubMedCrossRefGoogle Scholar
  17. Bourgeois, D. M., & Llodra, J. C. (2014). Global burden of dental condition among children in nine countries participating in an international oral health promotion programme, 2012-2013. International Dental Journal, 64(Suppl 2), 27–34.  https://doi.org/10.1111/idj.12129.CrossRefPubMedGoogle Scholar
  18. Burt, B. A., Eklund, S. A., Morgan, K. J., et al. (1998). The effects of sugars intake and frequency of ingestion on dental caries increment in a three-year longitudinal study. Journal of Dental Research, 67, 1422–1429.CrossRefGoogle Scholar
  19. Chapple, I. L., & Genco, R. (2013). Diabetes and periodontal diseases: Consensus report of the Joint EFP/AAP Workshop on Periodontitis and Systemic Diseases. Journal of Clinical Periodontology, 40(Suppl 14), S106–S112.PubMedGoogle Scholar
  20. Chapple, I. L., Milward, M. R., Ling-Mount-ford, N., Weston, P., Carter, K., Askey, K., Dallal, G. E., De Spirt, S., Sies, H., Patel, D., & Matthews, J. B. (2012). Adjunctive daily supplementation with encapsulated fruit, vegetable and berry juice powder concentrates and clinical periodontal outcomes: A double-blind RCT. Journal of Clinical Periodontology, 39, 62–72.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Chapple, I. L., Bouchard, P., Cagetti, M. G., Campus, G., Carra, M. C., Cocco, F., et al. (2017). Interaction of lifestyle, behaviour or systemic diseases with dental caries and periodontal diseases: Consensus report of group 2 of the joint EFP/ORCA workshop on the boundaries between caries and periodontal diseases. Journal of Clinical Periodontology, 44(Suppl 18), S39–S51.  https://doi.org/10.1111/jcpe.12685.CrossRefPubMedGoogle Scholar
  22. Costalonga M., Herzberg M.C. (2014). The oral microbiome and the immunobiology of periodontal disease and caries. Immunol Lett. 62(2 Pt A):22–38.  https://doi.org/10.1016/j.imlet.2014.08.017.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Coventry, J., Griffiths, G., Scully, C., & Tonetti, M. (2000). ABC of oral health: Periodontal disease. British Medical Journal, 321(7252), 36–39.PubMedCrossRefGoogle Scholar
  24. Darveau, R. P. (2010). Periodontitis: A polymicrobial disruption of host homeostasis. Nature Reviews. Microbiology, 8(7), 481–490.  https://doi.org/10.1038/nrmicro2337.CrossRefPubMedGoogle Scholar
  25. de Pablo, P., Chapple, I. L., Buckley, C. D., & Dietrich, T. (2009). Periodontitis in systemic rheumatic diseases. Nature Reviews Rheumatology, 5, 218–224.PubMedCrossRefGoogle Scholar
  26. Dewhirst, F. E., Chen, T., Izard, J., et al. (2010). The human oral microbiome. Journal of Bacteriology, 192, 5002–5017.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Dietrich, T., Sharma, P., Walter, C., Weston, P., & Beck, J. (2013). The epidemiological evidence behind the association between periodontitis and incident atherosclerotic cardiovascular disease. Journal of Periodontology, 84, S70–S84.PubMedCrossRefGoogle Scholar
  28. Dige, I., Grønkjær, L., & Nyvad, B. (2014). Molecular studies of the structural ecology of natural occlusal caries. Caries Research, 48, 451–460.  https://doi.org/10.1159/000357920.CrossRefPubMedGoogle Scholar
  29. Eggert, F. M., Drewell, L., Bigelow, J. A., Speck, J. E., & Goldner, M. (1991). The pH of gingival crevices and periodontal pockets in children, teenagers and adults. Archives of Oral Biology, 36, 233–238.PubMedCrossRefGoogle Scholar
  30. Eskan, M. A., Jorwani, R., Abe, T., Chmelar, J., Lim, J. H., Lian, S., et al. (2012). The leukocyte integrin antagonist Del-1 inhibits IL-17-mediated inflammatory bone loss. Nature Immunology, 13, 465–473.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Forner, L., Larsen, T., Kilian, M., & Holmstrup, P. (2006). Incidence of bacteremia after chewing, tooth brushing and scaling in individuals with periodontal inflammation. Journal of Clinical Periodontology, 33, 401–407.PubMedCrossRefGoogle Scholar
  32. Frias-Lopez, J., & Duran-Pinedo, A. (2012). Effect of periodontal pathogens on the metatranscriptome of a healthy multispecies biofilm model. Journal of Bacteriology, 194, 2082–2095.  https://doi.org/10.1128/JB.06328-11.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Genco, C. A., Cutler, C. W., Kapczynski, D., Maloney, K., & Arnold, R. R. (1991). A novel mouse model to study the virulence of and host response to Porphyromonas (Bacteroides) gingivalis. Infection and Immunity, 59, 1255–1263.PubMedPubMedCentralGoogle Scholar
  34. Goh, H. M. S., Yong, M. H. A., Chong, K. K. L., & Kline, K. A. (2017). Model systems for the study of Enterococcal colonization and infection. Virulence, 8, 1525–1562.PubMedPubMedCentralCrossRefGoogle Scholar
  35. Golub, L. M., Lee, H. M., Greenwald, R. A., et al. (1997). A matrix metalloproteinase inhibitor reduces bone-type collagen degradation fragments and specific collagenases in gingival crevicular fluid during adult periodontitis. Inflammation Research, 46, 310–319.PubMedCrossRefGoogle Scholar
  36. Griffen, A. L., Beall, C. J., Campbell, J. H., Firestone, N. D., Kumar, P. S., Yang, Z. K., Podar, M., & Leys, E. J. (2012). Distinct and complex bacterial profiles in human periodontitis and health revealed by 16S pyrosequencing. The ISME Journal, 6, 1176–1185.PubMedCrossRefGoogle Scholar
  37. Gruner, D., Paris, S., & Schwendicke, F. (2016). Probiotics for managing caries and periodontitis: Systematic review and meta-analysis. Journal of Dentistry, 48, 16–25.PubMedCrossRefGoogle Scholar
  38. Guggenheim, B. (1968). Streptococci of dental plaques. Caries Research, 2(2), 147–163.PubMedCrossRefGoogle Scholar
  39. Hajishengallis, G. (2014). The inflammophilic character of the periodontitis-associated microbiota. Molecular Oral Microbiology, 29, 248–257.  https://doi.org/10.1111/omi.12065.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Han, Y. W., & Wang, X. (2013). Mobile microbiome: Oral bacteria in extra-oral infections and inflammation. Journal of Dental Research, 92, 485–491.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Harris, R., Nicoll, A. D., Adair, P. M., & Pine, C. M. (2004). Risk factors for dental caries in young children: A systematic review of the literature. Community Dental Health, 21, 71–85.PubMedGoogle Scholar
  42. Hernández, M., Gamonal, J., Tervahartiala, T., Mäntylä, P., Rivera, O., Dezerega, A., Dutzan, N., & Sorsa, T. (2010). Associations between matrix metalloproteinase-8 and -14 and myeloperoxidase in gingival crevicular fluid from subjects with progressive chronic periodontitis: A longitudinal study. Journal of Periodontology, 81, 1644–1652.  https://doi.org/10.1902/jop.2010.100196.CrossRefPubMedGoogle Scholar
  43. Hezel, M. P., & Weitzberg, E. (2015). The oral microbiome and nitric oxide homoeostasis. Oral Diseases, 21(1), 7–16.PubMedCrossRefGoogle Scholar
  44. Hujoel, P. (2009). Dietary carbohydrates and dental-systemic diseases. Journal of Dental Research, 88, 490–502.PubMedCrossRefGoogle Scholar
  45. Ilie, O., van Loosdrecht, M. C., & Picioreanu, C. (2012). Mathematical modelling of tooth demineralisation and pH profiles in dental plaque. Journal of Theoretical Biology, 309, 159–175.PubMedCrossRefGoogle Scholar
  46. Jorth, P., Turner, K. H., Gumus, P., Nizam, N., Buduneli, N., & Whiteley, M. (2014). Metatranscriptomics of the human oral microbiome during health and disease. MBio, 5(2), e01012–e01014.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Kampfer, J., Göhring, T. N., Attin, T., & Zehnder, M. (2007). Leakage of food-borne Enterococcus faecalis through temporary fillings in a simulated oral environment. International Endodontic Journal, 40, 471–477.PubMedCrossRefGoogle Scholar
  48. Kanasi, E., Dewhirst, F. E., Chalmers, N. I., et al. (2010). Clonal analysis of the microbiota of severe early childhood caries. Caries Research, 44, 485–497.PubMedPubMedCentralCrossRefGoogle Scholar
  49. Kianoush, N., Adler, C. J., Nguyen, K.-A. T., Browne, G. V., Simonian, M., & Hunter, N. (2014). Bacterial profile of dentine caries and the impact of pH on bacterial population diversity. PLoS One, 9, e92940.  https://doi.org/10.1371/journal.pone.0092940.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Kilian, M., Chapple, I. L., Hannig, M., Marsh, P. D., Meuric, V., Pedersen, A. M., Tonetti, M. S., Wade, W. G., & Zaura, E. (2016). The oral microbiome—An update for oral healthcare professionals. British Dental Journal, 221(10), 657–666.  https://doi.org/10.1038/sj.bdj.2016.865.CrossRefPubMedGoogle Scholar
  51. Kolenbrander, P. E. (2000). Oral microbial communities: Biofilms, interactions, and genetic systems. Annual Review of Microbiology, 54, 413–437. PMID: 11018133.PubMedCrossRefGoogle Scholar
  52. Kolenbrander, P. E., Palmer, R. J., Jr., Rickard, A. H., Jakubovics, N. S., Chalmers, N. I., & Diaz, P. I. (2006). Bacterial interactions and successions during plaque development. Periodontology 2000, 42, 47–79.PubMedCrossRefGoogle Scholar
  53. Kressirer, C. A., Chen, T., Harriman, K. L., Frias-Lopez, J., Dewhirst, F. E., Tavares, M. A., & Tanner, A. C. R. (2018). Functional profiles of coronal and dentin caries in children. Journal of Oral Microbiology, 10, 1495976. PMCID: PMC6052428.PubMedPubMedCentralCrossRefGoogle Scholar
  54. Kumar, P. S., Griffen, A. L., Barton, J. A., Paster, B. J., Moeschberger, M. L., & Leys, E. J. (2003). New bacterial species associated with chronic periodontitis. Journal of Dental Research, 82, 338–344.PubMedCrossRefGoogle Scholar
  55. Lang, N. P., Hotz, P. R., Gusberti, F. A., & Joss, A. (1987). Longitudinal clinical and microbiological study on the relationship between infection with Streptococcus mutans and the development of caries in humans. Oral Microbiology and Immunology, 2, 39–47.PubMedCrossRefGoogle Scholar
  56. Li, J., Helmerhorst, E. J., Leone, C. W., Troxler, R. F., Yaskell, T., Haffajee, A. D., Socransky, S. S., & Oppenheim, F. G. (2004). Identification of early microbial colonizers in human dental biofilm. Journal of Applied Microbiology, 97(6), 1311–1318.PubMedCrossRefGoogle Scholar
  57. Li, Y., Ge, Y., Saxena, D., & Caufield, P. W. (2007). Genetic profiling of the oral microbiota associated with severe early-childhood caries. Journal of Clinical Microbiology, 45(1), 81–87.PubMedCrossRefGoogle Scholar
  58. Ling, Z., Kong, J., Jia, P., et al. (2010). Analysis of oral microbiota in children with dental caries by PCR-DGGE and barcoded pyrosequencing. Microbial Ecology, 60, 677–690.PubMedCrossRefGoogle Scholar
  59. Loe, H., Theilade, F., & Jensen, S. B. (1965). Experimental gingivitis in man. Journal of Periodontology, 36, 177–187.PubMedCrossRefGoogle Scholar
  60. Loesche, W. J. (1986). Role of Streptococcus mutans in human dental decay. Microbiological Reviews, 50(4), 353–380.PubMedPubMedCentralGoogle Scholar
  61. Loesche, W. J., & Straffon, L. H. (1979). Longitudinal investigation of the role of Streptococcus mutans in human fissure decay. Infection and Immunity, 26(2), 498–507.PubMedPubMedCentralGoogle Scholar
  62. López-López, A., Camelo-Castillo, A. J., Ferrer, M. D., Simón-Soro, A., & Mira, A. (2017). Health-associated niche inhabitants as oral probiotics: The case of Streptococcus dentisani. Frontiers in Microbiology, 8, 379.PubMedPubMedCentralCrossRefGoogle Scholar
  63. Marquis, R. E. (1995). Antimicrobial actions of fluoride for oral bacteria. Canadian Journal of Microbiology, 41, 955–964.  https://doi.org/10.1139/m95-133.CrossRefPubMedGoogle Scholar
  64. Marsh, P. D. (1994). Microbial ecology of dental plaque and its significance in health and disease. Advances in Dental Research, 8, 263–271.PubMedCrossRefGoogle Scholar
  65. Marsh, P. D. (2016). Dental biofilms in health and disease. In M. Goldberg (Ed.), Understanding dental caries (pp. 41–52). Berlin: Springer.CrossRefGoogle Scholar
  66. Marsh, P. D., & Devine, D. A. (2011). How is the development of dental biofilms influenced by the host? Journal of Clinical Periodontology, 38(Suppl 11), 28–35.PubMedCrossRefGoogle Scholar
  67. Marsh, P. D., Head, D. A., & Devine, D. A. (2015). Ecological approaches to oral biofilms: Control without killing. Caries Research, 49(Suppl 1), 46–54.PubMedCrossRefGoogle Scholar
  68. Martin-Cabezas, R., Davideau, J. L., Tenenbaum, H., & Huck, O. (2016). Clinical efficacy of probiotics as an adjunctive therapy to non-surgical periodontal treatment of chronic periodontitis: A systematic review and meta-analysis. Journal of Clinical Periodontology, 43, 520–530.PubMedCrossRefGoogle Scholar
  69. Merritt, J., & Qi, F. (2012). The mutacins of Streptococcus mutans: regulation and ecology. Molecular Oral Microbiology, 27, 57–69. PMCID: PMC3296966.PubMedCrossRefGoogle Scholar
  70. Munson, M. A., Pitt-Ford, T., Chong, B., Weightman, A., & Wade, W. G. (2002). Molecular and cultural analysis of the microflora associated with endodontic infections. Journal of Dental Research, 81, 761–766. Erratum in: Journal of Dental Research. 2003;82:247. Journal of Dental Research. 2003;82:69.PubMedCrossRefGoogle Scholar
  71. Murray, P. A., Prakobphol, A., Lee, T., Hoover, C. I., & Fisher, S. J. (1992). Adherence of oral streptococci to salivary glycoproteins. Infection and Immunity, 60, 31–38.PubMedPubMedCentralGoogle Scholar
  72. NCHS—National Center for Health Statistics. (2017). Health, United States, 2016: With chartbook on long-term trends in health. Hyattsville, MD.Google Scholar
  73. Nyvad, B., & Kilian, M. (1990). Comparison of the initial streptococcal microflora on dental enamel in caries-active and in caries-inactive individuals. Caries Research, 24(4), 267–272.PubMedCrossRefGoogle Scholar
  74. Paes Leme, A. F., Koo, H., Bellato, C. M., Bedi, G., & Cury, J. A. (2006). The role of sucrose in cariogenic dental biofilm formation—New insight. Journal of Dental Research, 85, 878–887. PMCID: PMC2257872.PubMedCrossRefPubMedCentralGoogle Scholar
  75. Palmer, C. A., Kent, R., Jr., Loo, C. Y., Hughes, C. V., Stutius, E., Pradhan, N., Dahlan, M., Kanasi, E., Arevalo Vasquez, S. S., & Tanner, A. C. (2010). Diet and caries-associated bacteria in severe early childhood caries. Journal of Dental Research, 89(11), 1224–1229.  https://doi.org/10.1177/0022034510376543.CrossRefPubMedPubMedCentralGoogle Scholar
  76. Palmer, S. R., Miller, J. H., Abranches, J., Zeng, L., Lefebure, T., Richards, V. P., Lemos, J. A., Stanhope, M. J., & Burne, R. A. (2013). Phenotypic heterogeneity of genomically-diverse isolates of Streptococcus mutans. PLoS One, 8, e61358. PMCID: PMC3628994.PubMedPubMedCentralCrossRefGoogle Scholar
  77. Peterson, S. N., Snesrud, E., Liu, J., Ong, A. C., Kilian, M., Schork, N. J., & Bretz, W. (2013). The dental plaque microbiome in health and disease. PLoS One, 8(3), e58487.  https://doi.org/10.1371/journal.pone.0058487.CrossRefPubMedPubMedCentralGoogle Scholar
  78. Qin, J., Chai, G., Brewer, J. M., Lovelace, L. L., & Lebioda, L. (2006). Fluoride inhibition of enolase: crystal structure and thermodynamics. Biochemistry, 45, 793–800.  https://doi.org/10.1021/bi051558s.CrossRefPubMedPubMedCentralGoogle Scholar
  79. Ramberg, P., Sekino, S., Uzel, N. G., Socransky, S., & Lindhe, J. (2003). Bacterial colonization during de novo plaque formation. Journal of Clinical Periodontology, 30, 990–995.PubMedCrossRefGoogle Scholar
  80. Razavi, A., Gmür, R., Imfeld, T., & Zehnder, M. (2007). Recovery of Enterococcus faecalis from cheese in the oral cavity of healthy subjects. Oral Microbiology and Immunology, 22(4), 248–251.PubMedCrossRefGoogle Scholar
  81. Ribeiro, A. A., Azcarate-Peril, M. A., Cadenas, M. B., Butz, N., Paster, B. J., Chen, T., et al. (2017). The oral bacterial microbiome of occlusal surfaces in children and its association with diet and caries. PLoS One, 12(7), e0180621.PubMedPubMedCentralCrossRefGoogle Scholar
  82. Rosier, B. T., Marsh, P. D., & Mira, A. (2017). Resilience of the oral microbiota in health: Mechanisms that prevent dysbiosis. Journal of Dental Research, 97(4), 371–380.  https://doi.org/10.1177/0022034517742139.CrossRefPubMedGoogle Scholar
  83. Scannapieco, F. A., & Binkley, C. J. (2012). Modest reduction in risk for ventilator-associated pneumonia in critically ill patients receiving mechanical ventilation following topical oral chlorhexidine. The Journal of Evidence-Based Dental Practice, 12, 103–106.  https://doi.org/10.1016/j.jebdp.2012.03.010.CrossRefPubMedGoogle Scholar
  84. Shoemark, D. K., & Allen, S. J. (2015). The microbiome and disease: Reviewing the links between the oral microbiome, aging and Alzheimer’s disease. Journal of Alzheimer’s Disease, 43, 725–738.PubMedCrossRefGoogle Scholar
  85. Sidi, A. D., & Ashley, F. P. (1984). Influence of frequent sugar intakes on experimental gingivitis. Journal of Periodontology, 55, 419–423.PubMedCrossRefGoogle Scholar
  86. Simón-Soro, A., Belda-Ferre, P., Cabrera-Rubio, R., Alcaraz, L. D., & Mira, A. (2013a). A tissue-dependent hypothesis of dental caries. Caries Research, 47, 591–600.PubMedCrossRefGoogle Scholar
  87. Simón-Soro, A., Tomás, I., Cabrera-Rubio, R., Catalan, M. D., Nyvad, B., & Mira, A. (2013b). Microbial geography of the oral cavity. Journal of Dental Research, 92, 616–621.  https://doi.org/10.1177/0022034513488119.CrossRefPubMedGoogle Scholar
  88. Simón-Soro, A., Guillen-Navarro, M., & Mira, A. (2014). Metatranscriptomics reveals overall active bacterial composition in caries lesions. Journal of Oral Microbiology, 6, 25443.  https://doi.org/10.3402/jom.v6.25443.CrossRefPubMedGoogle Scholar
  89. Smith, G. L. F., Cross, D. L., & Wray, D. (1995). Comparison of periodontal disease in HIV seropositive subjects and controls (1). Clinical features. Journal of Clinical Periodontology, 22, 558–568.PubMedCrossRefGoogle Scholar
  90. Socransky, S. S. (1977). Microbiology of periodontal disease—Present status and future considerations. Journal of Periodontology, 48(9), 497–504.PubMedCrossRefGoogle Scholar
  91. Socransky, S. S., Haffajee, A. D., Cugini, M. A., Smith, C., & Kent, R. L., Jr. (1998). Microbial complexes in subgingival plaque. Journal of Clinical Periodontology, 25(2), 134–144.PubMedCrossRefGoogle Scholar
  92. Takeshita, T., Nakano, Y., Kumagai, T., Yasui, M., Kamio, N., Shibata, Y., Shiota, S., & Yamashita, Y. (2009). The ecological proportion of indigenous bacterial populations in saliva is correlated with oral health status. The ISME Journal, 3, 65–78.PubMedCrossRefGoogle Scholar
  93. Takeshita, T., Matsuo, K., Furuta, M., Shibata, Y., Fukami, K., Shimazaki, Y., Akifusa, S., Han, D.-H., Kim, H.-D., Yokoyama, T., Ninomiya, T., Kiyohara, Y., & Yamashita, Y. (2014). Distinct composition of the oral indigenous microbiota in South Korean and Japanese adults. Scientific Reports, 4, 6990.  https://doi.org/10.1038/srep06990.CrossRefPubMedPubMedCentralGoogle Scholar
  94. Tuncil, Y. E., Xiao, Y., Porter, N. T., Reuhs, B. L., Martens, E. C., & Hamaker, B. R. (2017). Reciprocal prioritization to dietary glycans by gut bacteria in a competitive environment promotes stable coexistence. MBio, 8(5), pii: e01068-17.  https://doi.org/10.1128/mBio.01068-17.CrossRefGoogle Scholar
  95. Vartoukian, S. R., Palmer, R. M., & Wade, W. G. (2009). Diversity and morphology of members of the phylum “synergistetes” in periodontal health and disease. Applied and Environmental Microbiology, 75, 3777–3786.  https://doi.org/10.1128/AEM.02763-08.CrossRefPubMedPubMedCentralGoogle Scholar
  96. Wade, W. G. (2013). The oral microbiome in health and disease. Pharmacological Research, 69, 137–143.  https://doi.org/10.1016/j.phrs.2012.11.006.CrossRefPubMedGoogle Scholar
  97. Wang, J., Qi, J., Zhao, H., He, S., Zhang, Y., Wei, S., & Zhao, F. (2013). Metagenomic sequencing reveals microbiota and its functional potential associated with periodontal disease. Scientific Reports, 3, 1843.PubMedPubMedCentralCrossRefGoogle Scholar
  98. Xiao, J., Hara, A. T., Kim, D., Zero, D. T., Koo, H., & Hwang, G. (2017). Biofilm three-dimensional architecture influences in situ pH distribution pattern on the human enamel surface. International Journal of Oral Science, 9(2), 74–79.PubMedPubMedCentralCrossRefGoogle Scholar
  99. Xu, H., Hao, W., Zhou, Q., Wang, W., Xia, Z., Liu, C., Chen, X., Qin, M., & Chen, F. (2014). Plaque bacterial microbiome diversity in children younger than 30 months with or without caries prior to eruption of second primary molars. PLoS One, 9(2), e89269.  https://doi.org/10.1371/journal.pone.0089269. eCollection 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  100. Yasuda, K., Hsu, T., Gallini, C. A., et al. (2017). Fluoride depletes acidogenic taxa in oral but not gut microbial communities in mice. mSystems, 2(4), pii: e00047-17.CrossRefGoogle Scholar
  101. Zaura, E., & Mira, A. (2015). Editorial: The oral microbiome in an ecological perspective. Frontiers in Cellular and Infection Microbiology, 5, 39.  https://doi.org/10.3389/fcimb.2015.00039.CrossRefPubMedPubMedCentralGoogle Scholar
  102. Zijnge, V., van Leeuwen, M. B., Degener, J. E., Abbas, F., Thurnheer, T., Gmür, R., & Harmsen, H. J. (2010 Feb 24). Oral biofilm architecture on natural teeth. PLoS One, 5(2), e9321.  https://doi.org/10.1371/journal.pone.0009321.CrossRefPubMedPubMedCentralGoogle Scholar
  103. Zong, G., Holtfreter, B., Scott, A. E., Volzke, H., Petersmann, A., Dietrich, T., Newson, R. S., & Kocher, T. (2016). Serum vitamin B12 is inversely associated with periodontal progression and risk of tooth loss: A prospective cohort study. Journal of Clinical Periodontology, 43, 2–9.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Division of Diagnostic SciencesAdams School of Dentistry, University of North Carolina at Chapel HillChapel HillUSA

Personalised recommendations