Introduction to the Oral Cavity

  • Roland R. ArnoldEmail author
  • Apoena A. Ribeiro


The oral cavity plays a critical role as the seeder and gatekeeper of the microbiome that populates the continuum of mucosal surfaces of the gastrointestinal tract, as well as that of the respiratory tract. The mouth has a variety of discrete niches and environmental conditions (microhabitats) that select for and discriminate against a vast array of microorganisms that ultimately determine the microbiome. The oral microbiome is an important contributor to host health and refers specifically to the microorganisms that reside on or in the human oral cavity and its contiguous mucosal surfaces to the distal esophagus. The oral microbiome is composed of approximately 700 species of bacteria, and also includes viruses, fungi, protozoa and archaea associated with the varied microhabitats that define the oral microbial ecosystem. The normal microbiota of the mouth is responsible for maintaining homeostasis of the oral cavity, but is also responsible for two of the most common diseases of bacterial etiology in humans—dental caries and periodontal diseases. Oral diseases have also been linked to systemic chronic diseases including: cardiovascular disease, stroke, abnormal pregnancy outcomes, diabetes, aspiration pneumonia, cancers and Alzheimer’s disease. This Chapter aims to highlight the unique features of the main niches that compose the oral cavity and have influence on its microbiome composition.


Oral microbiome Oral environment Salivary microbiome Teeth surfaces microbiome Oral tissue surfaces microbiome 


  1. Aas, J. A., Paster, B. J., Stokes, L. N., Olsen, I., & Dewhirst, F. E. (2005). Defining the normal bacterial flora of the oral cavity. Journal of Clinical Microbiology, 43, 5721–5732.PubMedPubMedCentralGoogle Scholar
  2. Adler, C. J., Dobney, K., Weyrich, L. S., Kaidonis, J., Walker, A. W., Haak, W., Bradshaw, C. J., Townsend, G., Sołtysiak, A., Alt, K. W., Parkhill, J., & Cooper, A. (2013). Sequencing ancient calcified dental plaque shows changes in oral microbiota with dietary shifts of the Neolithic and Industrial revolutions. Nature Genetics, 45, 450–455.e1. Scholar
  3. Atanasova, K. R., & Yilmaz, O. (2014). Looking in the Porphyromonas gingivalis cabinet of curiosities: The microbium, the host and cancer association. Molecular Oral Microbiology, 29, 55–66. Epub 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Brandtzaeg, P. (2013). Secretory IgA: Designed for anti-microbial defense. Frontiers in Immunology, 4, 222. Scholar
  5. Cavalcanti, I. M., Nobbs, A. H., Ricomini-Filho, A. P., Jenkinson, H. F., & Del Bel Cury, A. A. (2016). Interkingdom cooperation between Candida albicans, Streptococcus oralis and Actinomyces oris modulates early biofilm development on denture material. Pathogens and Disease, 74.
  6. Chen, T., Yu, W. H., Izard, J., Baranova, O. V., Lakshmanan, A., & Dewhirst, F. E. (2010). The human oral microbiome database: A web accessible resource for investigating oral microbe taxonomic and genomic information. Database, 2010, baq013. Scholar
  7. Cornejo, O. E., Lefébure, T., Bitar, P. D., Lang, P., Richards, V. P., Eilertson, K., Do, T., Beighton, D., Zeng, L., Ahn, S. J., Burne, R. A., Siepel, A., Bustamante, C. D., & Stanhope, M. J. (2013). Evolutionary and population genomics of the cavity causing bacteria Streptococcus mutans. Molecular Biology and Evolution, 30, 881–893. Epub 2012 Dec 10.CrossRefPubMedGoogle Scholar
  8. Costalonga, M., & Herzberg, M. C. (2014). The oral microbiome and the immunobiology of periodontal disease and caries. Immunology Letters, 162, 22–38. Scholar
  9. Crielaard, W., Zaura, E., Schuller, A. A., Huse, S. M., Montijn, R. C., & Keijser, B. J. (2011). Exploring the oral microbiota of children at various developmental stages of their dentition in the relation to their oral health. BMC Medical Genomics, 4, 22. PMID: 21371338.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Dawes C. (2003). Estimates, from salivary analyses, of the turnover time of the oral mucosal epithelium in humans and the number of bacteria in an edentulous mouth. ArchOral Biol, 48(5), 329–336.CrossRefGoogle Scholar
  11. Dawes C. (2012). Salivary clearance and its effects on oral health. In: Edgar M, Dawes C. O’Mullane D, editors. Saliva and Oral Health. 4th ed. London: Stephen Jancocks Ltd. p. 81–96. [Chapter 5].Google Scholar
  12. Dawes, C., Pedersen, A. M., Villa, A., Ekström, J., Proctor, G. B., Vissink, A., Aframian, D., McGowan, R., Aliko, A., Narayana, N., Sia, Y. W., Joshi, R. K., Jensen, S. B., Kerr, A. R., & Wolff, A. (2015). The functions of human saliva: A review sponsored by the World Workshop on Oral Medicine VI. Archives of Oral Biology, 60, 863–874. Scholar
  13. Dewhirst, F. E., Chen, T., Izard, J., Paster, B. J., Tanner, A. C. R., Yu, W., Lakshmanan, A., & Wade, W. G. (2010). The human oral microbiome. Journal of Bacteriology, 192, 5002–5017.CrossRefGoogle Scholar
  14. Ding, A. M., Palmer, R. J., Jr., Cisar, J. O., & Kolenbrander, P. E. (2010). Shear-enhanced oral microbial adhesion. Applied and Environmental Microbiology, 76, 1294–1297. Scholar
  15. Dominguez-Bello, M. G., Costello, E. K., Contreras, M., Magris, M., Hidalgo, G., Fierer, N., & Knight, R. (2010). Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proceedings of the National Academy of Sciences of the United States of America, 107, 11971–11975. Scholar
  16. Dominy, S. S., Lynch, C., Ermini, F., et al. (2019). Porphyromonas gingivalis in Alzheimer’s disease brains: Evidence for disease causation and treatment with small-molecule inhibitors. Science Advances, 5, eaau3333. Scholar
  17. Edgar, W. M. (1990). Saliva and dental health. Clinical implications of saliva: Report of a consensus meeting. British Dental Journal, 169(3–4), 96–98.CrossRefGoogle Scholar
  18. Fábián, T. K., Fejérdy, P., & Csermely, P. (2008). Salivary genomics, transcriptomics and proteomics: The emerging concept of the oral ecosystem and their use in the early diagnosis of cancer and other diseases. Current Genomics, 9, 11–21.CrossRefGoogle Scholar
  19. Gillings, M. R., Paulsen, I. T., & Tetu, S. G. (2015). Ecology and evolution of the human microbiota: Fire, farming and antibiotics. Genes, 6, 841–857. Scholar
  20. Gong, K., & Herzberg, M. C. (1997). Streptococcus sanguis expresses a 150-kilodalton two-domain adhesin: Characterization of several independent adhesin epitopes. Infection and Immunity, 65, 3815–3821.PubMedPubMedCentralGoogle Scholar
  21. Gong, K., Mailloux, L., & Herzberg, M. C. (2000). Salivary film expresses a complex, macromolecular binding site for Streptococcus sanguis. The Journal of Biological Chemistry, 275, 8970–8974.CrossRefGoogle Scholar
  22. He, J., Li, Y., Cao, Y., Xue, J., & Zhou, X. (2015). The oral microbiome diversity and its relation to human diseases. Folia Microbiologica, 60, 69–80. Scholar
  23. Holgerson, P. L., Vestman, N. R., Claesson, R., Ohman, C., Domellof, M., Tanner, A. C., et al. (2013). Oral microbial profile discriminates breast-fed from formula-fed infants. Journal of Pediatric Gastroenterology and Nutrition, 56, 127–136. PMID: 22955450.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Humphrey, S. P., & Williamson, R. T. (2001). A review of saliva: Normal composition, flow, and function. The Journal of Prosthetic Dentistry, 85, 162–169.CrossRefGoogle Scholar
  25. Kaczmarek, M. J., & Rosenmund, H. (1977). The action of human pancreatic and salivary isoamylases on starch and glycogen. Clinica Chimica Acta, 79, 69–73.CrossRefGoogle Scholar
  26. Kato, I., Vasquez, A., Moyerbrailean, G., Land, S., Djuric, Z., Sun, J., Lin, H. S., & Ram, J. L. (2017). Nutritional correlates of human oral microbiome. Journal of the American College of Nutrition, 36, 88–98. Scholar
  27. Keijser, B. J. F., Zaura, E., Huse, S. M., van der Vossen, J. M. B. M., Schuren, F. H. J., Montijn, R. C., ten Cate, J. M., & Crielaard, W. (2008). Pyrosequencing analysis of the oral microflora of healthy adults. Journal of Dental Research, 87, 1016–1020.CrossRefGoogle Scholar
  28. Kivela, J., Parkkila, P., Parkkila, A. K., Leinonen, J., & Rajaniemi, H. (1999). Salivary carbonic anhydrase isoenzyme VI. The Journal of Physiology, 520, 315–320.CrossRefGoogle Scholar
  29. Kolenbrander, P. E., Andersen, R. N., & Moore, L. V. (1989). Coaggregation of Fusobacterium nucleatum, Selenomonas flueggei, Selenomonas infelix, Selenomonas noxia, and Selenomonas sputigena with strains from 11 genera of oral bacteria. Infection and Immunity, 57, 3194–3203.PubMedPubMedCentralGoogle Scholar
  30. Kolenbrander, P. E., Andersen, R. N., Blehert, D. S., Egland, P. G., Foster, J. S., & Palmer, R. J., Jr. (2002). Communication among oral bacteria. Microbiology and Molecular Biology Reviews, 66, 486–505.CrossRefGoogle Scholar
  31. Kolenbrander, P. E., Palmer, R. J., Jr., Periasamy, S., & Jakubovics, N. S. (2010). Oral multispecies biofilm development and the key role of cell-cell distance. Nature Reviews. Microbiology, 8, 471–480. Scholar
  32. Kongara, K. R., & Soffer, E. E. (1999). Saliva and esophageal protection. The American Journal of Gastroenterology, 94, 1446–1452.CrossRefGoogle Scholar
  33. Lamont, R. J., et al. (2018). The oral microbiota: Dynamic communities and host interactions. Nature Reviews, 16, 745–759.PubMedGoogle Scholar
  34. Larmas, M. (1992). Saliva and dental caries: Diagnostic tests for normal dental practice. International Dental Journal, 42, 199–208.PubMedGoogle Scholar
  35. Leito, J. T., Ligtenberg, A. J., Nazmi, K., de Blieck-Hogervorst, J. M., Veerman, E. C., & Nieuw Amerongen, A. V. (2008). A common binding motif for various bacteria of the bacteria-binding peptide SRCRP2 of DMBT1/gp-340/salivary agglutinin. Biological Chemistry, 389, 1193–1200. Scholar
  36. Lif Holgerson, P., Harnevik, L., Hernell, O., Tanner, A. C., & Johansson, I. (2011). Mode of birth delivery affects oral microbiota in infants. Journal of Dental Research, 90, 1183–1188. PMID: 21828355.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Mager, D. L., Ximenez-Fyvie, L. A., Haffajee, A. D., & Socransky, S. S. (2003). Distribution of selected bacterial species on intraoral surfaces. Journal of Clinical Periodontology, 30, 644–654.CrossRefGoogle Scholar
  38. Marsh, P. D. (2010). Controlling the oral biofilm with antimicrobials. Journal of Dentistry, 38(Suppl 1), S11–S15. Scholar
  39. Marsh, P. D., & Devine, D. A. (2011). How is the development of dental biofilms influenced by the host? Journal of Clinical Periodontology, 38(Suppl 11), 28–35. Scholar
  40. Matsuo, R. (2000). Role of saliva in the maintenance of taste sensitivity. Critical Reviews in Oral Biology and Medicine, 11, 216–229.CrossRefGoogle Scholar
  41. Offner, G. D., & Troxler, R. F. (2000). Heterogeneity of high-molecular-weight human salivary mucins. Advances in Dental Research, 14, 69–75.CrossRefGoogle Scholar
  42. Palmer, R. J., Jr., Gordon, S. M., Cisar, J. O., & Kolenbrander, P. E. (2003). Coaggregation-mediated interactions of streptococci and actinomyces detected in initial human dental plaque. Journal of Bacteriology, 185, 3400–3409.CrossRefGoogle Scholar
  43. Paster, B. J., Olsen, I., Aas, J. A., & Dewhirst, F. E. (2006). The breadth of bacterial diversity in the human periodontal pocket and other oral sites. Periodontology 2000, 42, 80–87.CrossRefGoogle Scholar
  44. Peterson, S. N., Snesrud, E., Liu, J., Ong, A. C., Kilian, M., Schork, N. J., et al. (2013). The dental plaque microbiome in health and disease. PLoS One, 8, e58487.CrossRefGoogle Scholar
  45. Ribeiro, A. A., Azcarate-Peril, M. A., Cadenas, M. B., Butz, N., Paster, B. J., Chen, T., & Arnold, R. A. (2017). The oral bacterial microbiome of occlusal surfaces in children and its association with diet and caries. PLoS One, 12, e0180621.CrossRefGoogle Scholar
  46. Sampaio-Maia, B., & Monteiro-Silva, F. (2014). Acquisition and maturation of oral microbiome throughout childhood: An update. Journal of Dental Research, 11, 291–301.Google Scholar
  47. Sarosiek, J., & McCallum, R. W. (2000). Mechanisms of oesophageal mucosal defence. Baillière’s Best Practice & Research. Clinical Gastroenterology, 14, 701–717.CrossRefGoogle Scholar
  48. Scannapieco, F. A., & Binkley, C. J. (2012). Modest reduction in risk for ventilator-associated pneumonia in critically ill patients receiving mechanical ventilation following topical oral chlorhexidine. The Journal of Evidence-Based Dental Practice, 12, 103–106. Scholar
  49. Schweigel, H., Wicht, M., & Schwendicke, F. (2016). Salivary and pellicle proteome: A datamining analysis. Scientific Reports, 6, 38882. Scholar
  50. Scully, C., & Greenman, J. (2008). Halitosis (breath odor). Periodontology 2000, 48, 66–75. Scholar
  51. Seymour, G. J., Ford, P. J., Cullinan, M. P., Leishman, S., & Yamazaki, K. (2007). Relationship between periodontal infections and systemic disease. Clinical Microbiology and Infection, 13(Suppl 4), 3–10.CrossRefGoogle Scholar
  52. Simón-Soro, A., Tomás, I., Cabrera-Rubio, R., Catalan, M. D., Nyvad, B., & Mira, A. (2013). Microbial geography of the oral cavity. Journal of Dental Research, 92, 616–621. Scholar
  53. Singh, R. K., Chang, H. W., Yan, D., Lee, K. M., Ucmak, D., Wong, K., Abrouk, M., Farahnik, B., Nakamura, M., Zhu, T. H., Bhutani, T., & Liao, W. (2017). Influence of diet on the gut microbiome and implications for human health. Journal of Translational Medicine, 15, 73–90.CrossRefGoogle Scholar
  54. Siqueira, W. L., Custodio, W., & McDonald, E. E. (2012). New insights into the composition and functions of the acquired enamel pellicle. Journal of Dental Research, 91, 1110–1118. Scholar
  55. Spielman, A. I., D’Abundo, S., Field, R. B., & Schmale, H. (1993). Protein analysis of human von Ebner saliva and a method for its collection from the foliate papillae. Journal of Dental Research, 72, 1331–1335.CrossRefGoogle Scholar
  56. Stephan, R. M. (1944). Intra-oral hydrogen ion concentrations associated with dental caries activity. Journal of Dental Research, 23, 257–266.CrossRefGoogle Scholar
  57. The Human Microbiome Consortium. (2012). Structure, function and diversity of the healthy human microbiome. Nature, 486, 207–214.CrossRefGoogle Scholar
  58. van’t Hof, W., Veerman, E..C. I., Nieuw Amerongen, A. V., Ligtenberg, A. J. M. (2014). Antimicrobial defense systems in saliva. In Ligtenberg AJM, Veerman ECI (eds): Saliva: Secretion and functions. Monogr Oral Sci. Basel, Karger, 2014, vol 24, pp 40–51. Scholar
  59. Valm, A. M., Mark Welch, J. L., Rieken, C. W., Hasegawa, Y., Sogin, M. L., Oldenbourg, R., Dewhirst, F. E., & Borisy, G. G. (2011). Systems-level analysis of microbial community organization through combinatorial labeling and spectral imaging. Proceedings of the National Academy of Sciences of the United States of America, 108(10), 4152–4157. Scholar
  60. Welch, M., Rosetti, B. J., Rieken, C. W., Dewhirst, F. W., & Borisy, G. G. (2016). Biogeography of a human oral microbiome at the micron scale. Proceedings of the National Academy of Sciences of the United States of America, 113, E791–E800.CrossRefGoogle Scholar
  61. Whitmore, S. E., & Lamont, R. J. (2014). Oral bacteria and cancer. PLoS Pathogens, 10, e1003933. eCollection 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  62. Xu, X., He, J., Xue, J., Wang, Y., Li, K., Zhang, K., et al. (2015). Oral cavity contains distinct niches with dynamic microbial communities. Environmental Microbiology, 17, 699–710. Scholar
  63. Zaura, E., Keijser, B. J., Huse, S. M., et al. (2009). Defining the healthy “core microbiome” of oral microbial communities. BMC Microbiology, 9, 259–271.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Division of Diagnostic Sciences, Adams School of DentistryUniversity of North Carolina at Chapel HillChapel HillUSA

Personalised recommendations