Production and Conservation of Starter Cultures: From “Backslopping” to Controlled Fermentations

  • Hunter D. Whittington
  • Suzanne F. Dagher
  • José M. Bruno-BárcenaEmail author


As human society has evolved from small, nomadic groups of hunter-gatherers to large, stationary civilizations, there has been an increased reliance on the preservation of foods to sustain populations through periods of reduced agricultural productivity. Microbial fermentations have been used for millennia to preserve high water activity foods such as fruits, vegetables, and meats. Originally, a process called “backslopping”, in which a small portion of a previously successful fermentation is used to inoculate fresh substrate was used to generate starter cultures for future fermentations. However, these processes fell from favor in the nineteenth century concurrently with the rise in public interest and governmental regulations concerning food safety. Starter cultures for mass-produced fermented foods were subsequently required to be produced from defined GRAS microorganisms, triggering a systematic reduction of microbial diversity seeding the digestive tract. Recently, several landmark studies have highlighted the importance of a healthy gut microbiome leading to a renewed interest in more traditional (artisanal) methods of food fermentations. New methods of mixed-strain starter culture production, particularly immobilized cell reactors, present attractive alternatives to the more traditional batch reactors due to their ability to produce a more robust and diverse starter all in one step. Additionally, advances in culture preservation technology, like freeze- and spray-drying, have increased the long-term viability and reduced the cost of starter cultures.


Backslopping Food preservation Food biotransformation Fermentation Traditional fermentation Industrial fermentation Culture production 



This work was supported by the College of Agriculture and Life Science and the Department of Plant and Microbial Biology at North Carolina State University. HW was supported by a fellowship generously provided by the NC State Graduate Student Support Plan.


  1. Ai, M., Qiu, X., Huang, J., Wu, C., Jin, Y., & Zhou, R. (2019). Characterizing the microbial diversity and major metabolites of Sichuan bran vinegar augmented by Monascus purpureus. International Journal of Food Microbiology, 292, 83–90.PubMedCrossRefGoogle Scholar
  2. Altieri, C., Ciuffreda, E., Di Maggio, B., & Sinigaglia, M. (2017). Lactic acid bacteria as starter cultures. In B. Speranza, A. Bevilacqua, M. R. Corbo, & M. Sinigaglia (Eds.), Starter cultures in food production. Chichester: Wiley.Google Scholar
  3. Amit, S. K., Uddin, M. M., Rahman, R., Islam, S. M. R., & Khan, M. S. (2017). A review on mechanisms and commercial aspects of food preservation and processing. Agriculture & Food Security, 6(1), 51.CrossRefGoogle Scholar
  4. Axelsson, L. T., Chung, T. C., Dobrogosz, W. J., & Lindgren, S. E. (1989). Production of a broad spectrum antimicrobial substance by Lactobacillus reuteri. Microbial Ecology in Health and Disease, 2(2), 131–136.CrossRefGoogle Scholar
  5. Black, M., & Pritchard, H. W. (2002). Desiccation and survival in plants: Drying without dying. Wallingford: CABI Publishing.CrossRefGoogle Scholar
  6. Blomstedt, K. C., Griffiths, A. C., Gaff, F. D., Hamill, D. J., & Neale, D. A. (2018). Plant desiccation tolerance and its regulation in the foliage of resurrection “flowering-plant” species. Agronomy, 8(8).Google Scholar
  7. Bokulich, N. A., Lewis, Z. T., Boundy-Mills, K., & Mills, D. A. (2016). A new perspective on microbial landscapes within food production. Current Opinion in Biotechnology, 37, 182–189.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Boserup, E. (1976). Environment, population, and technology in primitive societies. Population and Development Review, 2(1), 21–36.CrossRefGoogle Scholar
  9. Bruno-Bárcena, J. M., Ragout, A. L., & Sineriz, F. (1998). Microbial physiology applied to process optimisation: Lactic acid bacteria. In E. Galindo & O. T. Ramirez (Eds.), Advances in bioprocess engineering II (Vol. II, pp. 97–110). Netherlands: Kluwer Academic Publishers.CrossRefGoogle Scholar
  10. Bruno-Bárcena, J. M., Ragout, A. L., Cordoba, P. R., & Sineriz, F. (1999). Continuous production of L(+)-lactic acid by Lactobacillus casei in two-stage systems. Applied Microbiology and Biotechnology, 51(3), 316–324.PubMedCrossRefGoogle Scholar
  11. Bruno-Bárcena, J. M., Ragout, A. L., Cordoba, P. R., & Sineriz, F. (2001). Reactor configuration for fermentation in immobilized continuous system. In J. F. T. Spencer & A. L. R. de Spencer (Eds.), Food microbiology protocols. Totowa, NJ: Humana Press.Google Scholar
  12. Bruno-Bárcena, J. M., Azcarate-Peril, M. A., & Hassan, H. M. (2010). Role of antioxidant enzymes in bacterial resistance to organic acids. Applied and Environmental Microbiology, 76(9), 2747–2753.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Buchanan, R. A. (2018). History of technology. Encyclopaedia Britannica. Encyclopaedia Britannica, Inc.Google Scholar
  14. Carvalho, A. S., Silva, J., Ho, P., Teixeira, P., Malcata, F. X., & Gibbs, P. (2004). Relevant factors for the preparation of freeze-dried lactic acid bacteria. International Dairy Journal, 14(10), 835–847.CrossRefGoogle Scholar
  15. Champagne, C. P., Lacroix, C., & Sodini-Gallot, I. (1994). Immobilized cell technologies for the dairy industry. Critical Reviews in Biotechnology, 14(2), 109–134.PubMedCrossRefGoogle Scholar
  16. Chen, G., Chen, C., & Lei, Z. (2017). Meta-omics insights in the microbial community profiling and functional characterization of fermented foods. Trends in Food Science & Technology, 65, 23–31.CrossRefGoogle Scholar
  17. Chombo-Morales, P., Kirchmayr, M., Gschaedler, A., Lugo-Cervantes, E., & Villanueva-Rodríguez, S. (2016). Effects of controlling ripening conditions on the dynamics of the native microbial population of Mexican artisanal Cotija cheese assessed by PCR-DGGE. LWT-Food Science and Technology, 65, 1153–1161.CrossRefGoogle Scholar
  18. Cinquin, C., Le Blay, G., Fliss, I., & Lacroix, C. (2004). Immobilization of infant fecal microbiota and utilization in an in vitro colonic fermentation model. Microbial Ecology, 48(1), 128–138.PubMedCrossRefGoogle Scholar
  19. Cocolin, L., & Ercolini, D. (2015). Zooming into food-associated microbial consortia: A ‘cultural’ evolution. Current Opinion in Food Science, 2, 43–50.CrossRefGoogle Scholar
  20. Cogan, T. M., Buckley, D. J., & Condon, S. (1971). Optimum growth parameters of lactic streptococci used for the production of concentrated cheese starter cultures. The Journal of Applied Bacteriology, 34(2), 403–409.PubMedCrossRefGoogle Scholar
  21. Condon, S. (1987). Responses of lactic acid bacteria to oxygen. FEMS Microbiology Letters, 46(3), 269–280.CrossRefGoogle Scholar
  22. Cordain, L., Eaton, S. B., Sebastian, A., Mann, N., Lindeberg, S., Watkins, B. A., O’Keefe, J. H., & Brand-Miller, J. (2005). Origins and evolution of the Western diet: Health implications for the 21st century. The American Journal of Clinical Nutrition, 81(2), 341–354.PubMedCrossRefGoogle Scholar
  23. Costerton, J. W., Stewart, P. S., & Greenberg, E. P. (1999). Bacterial biofilms: A common cause of persistent infections. Science, 284(5418), 1318–1322.PubMedCrossRefGoogle Scholar
  24. Dagher, S. F., Ragout, A. L., Sineriz, F., & Bruno-Bárcena, J. M. (2010). Cell immobilization for production of lactic acid biofilms do it naturally. Advances in Applied Microbiology, 71, 113–148.PubMedCrossRefGoogle Scholar
  25. De Man, J. C., Rogosa, M., & Sharpe, M. E. (1960). A medium for the cultivation of lactobacilli. The Journal of Applied Bacteriology, 23(1), 130–135.CrossRefGoogle Scholar
  26. Di Cagno, R., Coda, R., De Angelis, M., & Gobbetti, M. (2013). Exploitation of vegetables and fruits through lactic acid fermentation. Food Microbiology, 33(1), 1–10.PubMedCrossRefGoogle Scholar
  27. Dolci, P., Zenato, S., Pramotton, R., Barmaz, A., Alessandria, V., Rantsiou, K., & Cocolin, L. (2013). Cheese surface microbiota complexity: RT-PCR-DGGE, a tool for a detailed picture? International Journal of Food Microbiology, 162(1), 8–12.PubMedCrossRefGoogle Scholar
  28. Doleyres, Y., Paquin, C., LeRoy, M., & Lacroix, C. (2002). Bifidobacterium longum ATCC 15707 cell production during free- and immobilized-cell cultures in MRS-whey permeate medium. Applied Microbiology and Biotechnology, 60(1–2), 168–173.PubMedGoogle Scholar
  29. Doleyres, Y., Fliss, I., & Lacroix, C. (2004). Increased stress tolerance of Bifidobacterium longum and Lactococcus lactis produced during continuous mixed-strain immobilized-cell fermentation. Journal of Applied Microbiology, 97(3), 527–539.PubMedCrossRefGoogle Scholar
  30. Doulgeraki, A. I., Ercolini, D., Villani, F., & Nychas, G.-J. E. (2012). Spoilage microbiota associated to the storage of raw meat in different conditions. International Journal of Food Microbiology, 157(2), 130–141.PubMedCrossRefGoogle Scholar
  31. Dubos, R. (1960). Pasteur and modern science. New York: Anchor Books Doubleday & Company, Inc.Google Scholar
  32. Food Preservation. (2018). Food preservation. Dictionary of American History.
  33. Gilbert, J. A., van der Lelie, D., & Zarraonaindia, I. (2014). Microbial terroir for wine grapes. Proceedings of the National Academy of Sciences of the United States of America, 111(1), 5–6.PubMedCrossRefGoogle Scholar
  34. González-Córdova, A. F., Yescas, C., Ortiz-Estrada, Á. M., De la Rosa-Alcaraz, M. Á., Hernández-Mendoza, A., & Vallejo-Cordoba, B. (2016). Invited review: Artisanal Mexican cheeses. Journal of Dairy Science, 99(5), 3250–3262.PubMedCrossRefGoogle Scholar
  35. Hammond, S. T., Brown, J. H., Burger, J. R., Flanagan, T. P., Fristoe, T. S., Mercado-Silva, N., Nekola, J. C., & Okie, J. G. (2015). Food spoilage, storage, and transport: Implications for a sustainable future. Bioscience, 65(8), 758–768.CrossRefGoogle Scholar
  36. Holliday, T. W., Gautney, J. R., & Friedl, L. (2014). Right for the wrong reasons reflections on modern human origins in the post-Neanderthal genome era. Current Anthropology, 55(6), 696–724.CrossRefGoogle Scholar
  37. Irlinger, F., & Mounier, J. (2009). Microbial interactions in cheese: Implications for cheese quality and safety. Current Opinion in Biotechnology, 20(2), 142–148.PubMedCrossRefGoogle Scholar
  38. Junter, G. A., & Jouenne, T. (2004). Immobilized viable microbial cells: From the process to the proteome em leader or the cart before the horse. Biotechnology Advances, 22(8), 633–658.PubMedCrossRefPubMedCentralGoogle Scholar
  39. Klaenhammer, T. R. (1988). Bacteriocins of lactic acid bacteria. Biochimie, 70(3), 337–349.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Klaenhammer, T. R., Barrangou, R., Buck, B. L., Azcarate-Peril, M. A., & Altermann, E. (2005). Genomic features of lactic acid bacteria effecting bioprocessing and health. FEMS Microbiology Reviews, 29(3), 393–409.PubMedCrossRefGoogle Scholar
  41. Kline, L., & Sugihara, T. F. (1971). Microorganisms of the San Francisco sour dough bread process. II. Isolation and characterization of undescribed bacterial species responsible for the souring activity. Applied Microbiology, 21(3), 459–465.PubMedPubMedCentralGoogle Scholar
  42. Lahtinen, S., Salminen, S., von Wright, A., & Ouwehand, A. (2012). Lactic acid bacteria: Microbiological and functional aspects (4th ed.). New York: Taylor & Francis Group/CRC Press.Google Scholar
  43. Leff, J. W., & Fierer, N. (2013). Bacterial communities associated with the surfaces of fresh fruits and vegetables. PLoS One, 8(3), e59310.PubMedPubMedCentralCrossRefGoogle Scholar
  44. Leite, M. C. T., Troxell, B., Bruno-Bárcena, J. M., & Hassan, H. M. (2014). Biology of reactive oxygen species, oxidative stress, and antioxidants in lactic acid bacteria. In K. Venema & A. P. de Carmo (Eds.), Probiotics and prebiotics: Current research and future trends. Norfolk, VA: Caister Academic Press.Google Scholar
  45. Macfarlane, S., McBain, A. J., & Macfarlane, G. T. (1997). Consequences of biofilm and sessile growth in the large intestine. Advances in Dental Research, 11(1), 59–68.PubMedCrossRefGoogle Scholar
  46. Macori, G., & Cotter, P. D. (2018). Novel insights into the microbiology of fermented dairy foods. Current Opinion in Biotechnology, 49, 172–178.PubMedCrossRefGoogle Scholar
  47. Marco, M. L., Heeney, D., Binda, S., Cifelli, C. J., Cotter, P. D., Foligné, B., Gänzle, M., Kort, R., Pasin, G., Pihlanto, A., Smid, E. J., & Hutkins, R. (2017). Health benefits of fermented foods: Microbiota and beyond. Current Opinion in Biotechnology, 44, 94–102.PubMedCrossRefGoogle Scholar
  48. Masco, L., Huys, G., De Brandt, E., Temmerman, R., & Swings, J. (2005). Culture-dependent and culture-independent qualitative analysis of probiotic products claimed to contain bifidobacteria. International Journal of Food Microbiology, 102(2), 221–230.PubMedCrossRefGoogle Scholar
  49. Mäyrä-Mäkinen, A. B. M. (2004). Industrial use and production of lactic acid bacteria. In S. Salminen, A. von Wright, & A. Ouwehand (Eds.), Lactic acid bacteria: Microbiological and functional aspects (pp. 175–193). New York: Marcel Dekker, Inc.Google Scholar
  50. Mikelsaar, M., Lazar, V., Onderdonk, A. B., & Donelli, G. (2011). Do probiotic preparations for humans really have efficacy? Microbial Ecology in Health and Disease, 22(1), 10128.CrossRefGoogle Scholar
  51. Murugesan, S., Reyes-Mata, M. P., Nirmalkar, K., Chavez-Carbajal, A., Juárez-Hernández, J. I., Torres-Gómez, R. E., Piña-Escobedo, A., Maya, O., Hoyo-Vadillo, C., Ramos-Ramírez, E. G., Salazar-Montoya, J. A., & García-Mena, J. (2018). Profiling of bacterial and fungal communities of Mexican cheeses by high throughput DNA sequencing. Food Research International, 113, 371–381.PubMedCrossRefGoogle Scholar
  52. Nair, M. R. B., Chouhan, D., Sen Gupta, S., & Chattopadhyay, S. (2016). Fermented foods: Are they tasty medicines for Helicobacter pylori associated peptic ulcer and gastric cancer? Frontiers in Microbiology, 7(1148).Google Scholar
  53. Özilgen, M. (1996). Kinetics of food processes involving pure or mixed cultures of lactic acid bacteria. In T. F. Bozoglu & B. Ray (Eds.), Lactic acid bacteria: Current advances in metabolism, genetics and applications (pp. 367–378). Berlin: Springer.Google Scholar
  54. Pont, E. G., & Holloway, G. L. (1968). A new approach to production of cheese starter—Some preliminary investigations. Australian Journal of Dairy Technology, 23(1), 22.Google Scholar
  55. Prokopov, T., & Tanchev, S. (2007). Methods of food preservation. Food safety. Boston, MA: Springer.Google Scholar
  56. Rangel, D. E. (2011). Stress induced cross-protection against environmental challenges on prokaryotic and eukaryotic microbes. World Journal of Microbiology and Biotechnology, 27(6), 1281–1296.PubMedCrossRefGoogle Scholar
  57. Salminen, S., von Wright, A., & Ouwehand, A. (2004). Lactic acid bacteria: Microbiological and functional aspects (3rd ed.). New York: Marcel Dekker, Inc./CRC Press.CrossRefGoogle Scholar
  58. Santivarangkna, C., Kulozik, U., & Foerst, P. (2007). Alternative drying processes for the industrial preservation of lactic acid starter cultures. Biotechnology Progress, 23(2), 302–315.PubMedCrossRefGoogle Scholar
  59. Schillinger, U. (1999). Isolation and identification of lactobacilli from novel-type probiotic and mild yoghurts and their stability during refrigerated storage. International Journal of Food Microbiology, 47(1–2), 79–87.PubMedCrossRefGoogle Scholar
  60. Schornsteiner, E., Mann, E., Bereuter, O., Wagner, M., & Schmitz-Esser, S. (2014). Cultivation-independent analysis of microbial communities on Austrian raw milk hard cheese rinds. International Journal of Food Microbiology, 180, 88–97.PubMedCrossRefGoogle Scholar
  61. Septembre-Malaterre, A., Remize, F., & Poucheret, P. (2018). Fruits and vegetables, as a source of nutritional compounds and phytochemicals: Changes in bioactive compounds during lactic fermentation. Food Research International, 104, 86–99.PubMedCrossRefGoogle Scholar
  62. Sieuwerts, S., de Bok, F. A. M., Hugenholtz, J., & van Hylckama Vlieg, J. E. T. (2008). Unraveling microbial interactions in food fermentations: From classical to genomics approaches. Applied and Environmental Microbiology, 74(16), 4997–5007.PubMedPubMedCentralCrossRefGoogle Scholar
  63. Talarico, T. L., Casas, I. A., Chung, T. C., & Dobrogosz, W. J. (1988). Production and isolation of reuterin, a growth inhibitor produced by Lactobacillus reuteri. Antimicrobial Agents and Chemotherapy, 32, 1854–1858.PubMedPubMedCentralCrossRefGoogle Scholar
  64. Tavan, E., Cayuela, C., Antoine, J. M., & Cassand, P. (2002). Antimutagenic activities of various lactic acid bacteria against food mutagens: Heterocyclic amines. The Journal of Dairy Research, 69(2), 335–341.PubMedCrossRefGoogle Scholar
  65. van Hijum, S. A. F. T., Vaughan, E. E., & Vogel, R. F. (2013). Application of state-of-art sequencing technologies to indigenous food fermentations. Current Opinion in Biotechnology, 24(2), 178–186.PubMedCrossRefGoogle Scholar
  66. van Hylckama Vlieg, J. E., Veiga, P., Zhang, C., Derrien, M., & Zhao, L. (2011). Impact of microbial transformation of food on health—From fermented foods to fermentation in the gastro-intestinal tract. Current Opinion in Biotechnology, 22(2), 211–219.PubMedCrossRefGoogle Scholar
  67. Vandenberg, D. J. C., Smits, A., Pot, B., Ledeboer, A. M., Kersters, K., Verbakel, J. M. A., & Verrips, C. T. (1993). Isolation, screening and identification of lactic-acid bacteria from traditional food fermentation processes and culture collections. Food Biotechnology, 7(3), 189–205.CrossRefGoogle Scholar
  68. Wu, S., Xu, S., Chen, X., Sun, H., Hu, M., Bai, Z., Zhuang, G., & Zhuang, X. (2018). Bacterial communities changes during food waste spoilage. Scientific Reports, 8(1), 8220.PubMedPubMedCentralCrossRefGoogle Scholar
  69. Yang, Y., Shevchenko, A., Knaust, A., Abuduresule, I., Li, W., Hu, X., Wang, C., & Shevchenko, A. (2014). Proteomics evidence for kefir dairy in Early Bronze Age China. Journal of Archaeological Science, 45, 178–186.CrossRefGoogle Scholar
  70. Zheng, X., Liu, F., Shi, X., Wang, B., Li, K., Li, B., & Zhuge, B. (2018). Dynamic correlations between microbiota succession and flavor development involved in the ripening of Kazak artisanal cheese. Food Research International, 105, 733–742.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Hunter D. Whittington
    • 1
  • Suzanne F. Dagher
    • 1
  • José M. Bruno-Bárcena
    • 1
    Email author
  1. 1.Department of Plant and Microbial BiologyNorth Carolina State UniversityRaleighUSA

Personalised recommendations