Advertisement

Fermented Vegetables as Vectors for Relocation of Microbial Diversity from the Environment to the Human Gut

  • Ilenys M. Pérez-DíazEmail author
Chapter

Abstract

The discovery of yeasts as living cells able to produce ethanol in fermented foods and beverages in the 1920s continues to captivate our imagination with respect to the functionality and role of microbes in food preservation and human health. Mounting evidence confirms the ability of microbes to deliver nutrition, flavor and many bio-functionalities to fermented foods and the gastrointestinal (GI) tract of mammals. The microbial diversity found in fermented foods, particulalrly vegetables, can benefit the human GI tract microbiome. Critical functions for microbes associated with fresh vegetables include the contribution to growth, development and defense of host plants. In parallel, plants have evolved to select and maintain beneficial microbes, including those within their tissue. Fermentation then serves as an instrument to pre-adapt beneficial microbes indigenous to fresh vegetables to the acidic pH and high lactic acid concentration characteristic of the colon and to the metabolism of dietary fiber, particularly pectic substances naturally present in the plant material and the gut. Fermented vegetable products enjoy a long-lasting record of safety upon consumption and are an appropriate vector for the translocation of microbial diversity from plants to the gut. Fermented vegetables can enhance prebiotic fiber and beneficial microbes content and consequently augment the catalog of metabolic functions needed in and available to the gut for building resilience in a healthy individual. It is the indigenous microbiota of fermented vegetables and intrinsic chemical composition of substrates, particularly dietary fibers, which can enable beneficial health claims from the consumption of pickles.

Keywords

Vegetables microbiome Natural fermentation of vegetables Spoilage Cucumber fermentation Sauerkraut Lactic Acid Bacteria (LAB) 

References

  1. Anderson, R. E., Daeschel, M. A., & Ericksson, C. E. (1988). Controlled lactic acid fermentation of vegetables. In G. Durand, L. Babichon, & J. Florent (Eds.), Proceedings of the 8th International Symposium (pp. 855–868). Paris, France: Societé Fraçaise de Microbiologie.Google Scholar
  2. Arroyo-López, F. N., Querol, A., Bautista-Gallego, J., & Garrido-Fernández, A. (2008). Role of yeasts in table olive production. International Journal of Food Microbiology, 128, 189–196.PubMedCrossRefGoogle Scholar
  3. Balatsouras, G. (1985). Taxonomic and physiological characteristics of the facultative rod type lactic acid bacteria isolated from fermenting green and black olives. Grasas y Aceites, 36, 239–249.Google Scholar
  4. Barko, P. C., McMichael, M. A., Swanson, K. S., & Williams, D. A. (2018). The gastrointestinal microbiome: A review. Journal of Veterinary Internal Medicine, 32, 9–25.PubMedCrossRefGoogle Scholar
  5. Barrangou, R., Yoon, S. S., Breidt, F., Fleming, H. P., & Klaenhammer, T. R. (2002). Characterization of six Leuconostoc fallax bacteriophages isolated from an industrial sauerkraut fermentation. Applied and Environmental Microbiology, 68, 5452–5458.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Bell, T. A., & Etchells, J. L. (1961). Influence of salt (NaCl) on pectinolytic softening of cucumbers. Journal of Food Science, 26, 84–90.CrossRefGoogle Scholar
  7. Bell, T. A., Etchells, J. L., & Jones, I. D. (1950). Softening of commercial cucumber salt-stock in relation to polygalacturonase activity. Food Technology, 4, 157–163.Google Scholar
  8. Beuchat, L. R., Brackett, R. E., Hao, D. Y., & Conner, D. E. (1986). Growth and thermal inactivation of Listeria monocytogenes in cabbage and cabbage juice. Canadian Journal of Microbiology, 32, 791–795.PubMedCrossRefGoogle Scholar
  9. Bleve, G., Tufariello, M., Durante, M., Grieco, F., Ramires, F. A., Mita, G., Tasioula-Margari, M., & Logrieco, A. F. (2015). Physico-chemical characterization of natural fermententation process of Conservolea and Kalamata table olives and development of a protocol for the preselection of fermentation starters. Food Microbiology, 46, 368–382.PubMedCrossRefGoogle Scholar
  10. Borg, A. F., Etchells, J. L., Bell, T. A. (1972). Microbial examination of solar, rock, and granulated salts and the effect of these salts on the growth of certain species of lactic acid bacteria. Pickle Pak Sci 2(1), 11–17.Google Scholar
  11. Botta, C., & Cocolin, L. (2012). Microbial dynamics and biodiversity in table olive fermentation: Culture-dependent and independent approaches. Frontiers in Microbiology, 3, 245.  https://doi.org/10.3389/fmicb.2012.00245.
  12. Breidt, F., & Caldwell, J. M. (2011). Survival of Escherichia coli O157:H7 in cucumber fermentation brines. Journal of Food Science, 76(3), M198–M203.PubMedCrossRefGoogle Scholar
  13. Breidt, F., Kay, K., Cook, J., Osborne, J., Ingham, B., & Arritt, F. (2013a). Determination of 5-log reduction times for Escherichia coli O157:H7, Salmonella enterica, or Listeria monocytogenes in acidified foods with pH 3.5 or 3.8. Journal of Food Protection, 76(7), 1245–1249.PubMedCrossRefGoogle Scholar
  14. Breidt, F., Medina-Pradas, E., Wafa, D., Pérez-Díaz, I. M., Franco, W., Huang, H., Johanningsmeier, S. D., & Kim, J. (2013b). Characterization of cucumber fermentation spoilage bacteria by enrichment culture and 16S rDNA cloning. Journal of Food Science, 78(3), M470–M476.PubMedCrossRefGoogle Scholar
  15. Brock, T. D. (1961). Milestones in microbiology. Englewood Cliffs, NJ: Prentice Hall.Google Scholar
  16. Buckenhüskes, H., Jensen, H. A., Anderson, R., Garrido Fernández, A., & Rodrigo, M. (1990). Fermented vegetables. In P. Zeuthen, J. C. Cheftel, C. Eriksson, T. R. Gormley, P. Linko, & K. Paulus (Eds.), Processing and quality of foods. Food biotechnology: Avenue to healthy and nutritious products (Vol. 2, pp. 2162–2188). London: Elsevier Appl. Science.Google Scholar
  17. Caggia, C., Randazzo, C. L., Di Salvo, M., Romeo, F., & Giudici, P. (2004). Occurrence of Listeria monocytogenes in green table olives. Journal of Food Protection, 67, 2189–2194.PubMedCrossRefGoogle Scholar
  18. Cauley, S. M. 2016. Survival of commercially available lyophiized Lactobacillus plantarum and Pediococcus acidilactici probiotic cultures in acidified, refrigerated cucumbers. Thesis Dissertation at North Carolina State University.Google Scholar
  19. Chang, J. Y., & Chang, H. C. (2010). Improvements in the quality and shelf-life of kimchi by fermentation with induced bacteriocin-producing strain, Leuconostoc citreum GJ7 as a starter. Journal of Food Science, 75, M103–M110.PubMedCrossRefGoogle Scholar
  20. Chen, K. H., McFeeters, R. F., & Fleming, H. P. (1983a). Stability of mannitol to Lactobacillus plantarum degradation in green beans fermented with Lactobacillus cellobiosus. Journal of Food Science, 48(3), 972–974.CrossRefGoogle Scholar
  21. Chen, K. H., McFeeters, R. F., & Fleming, H. P. (1983b). Complete heterolactic acid fermentation of green beans by Lactobacillus cellobiosus. Journal of Food Science, 48(3), 967–971.CrossRefGoogle Scholar
  22. Cogan, T. M. (1996). History and taxonomy of starter cultures. In T. M. Cogan & J. P. Accolas (Eds.), Dairy starter cultures (pp. 1–23). New York: VCH Publishers.Google Scholar
  23. Cogan, T. M., & Hill, C. (1993). Cheese starter cultures. In P. F. Fox (Ed.), Cheese: Chemistry, physics, and microbiology (Vol. 1, 2nd ed., pp. 193–194). London: Chapman and Hall.CrossRefGoogle Scholar
  24. Columela, L. J. M. (1979). 45. De Re Rustica (Vol. II). Spain: Nestlé, A.E.P.A. Santander.Google Scholar
  25. Conner, D. E., Brackett, R. E., & Beuchat, L. R. (1986). Effect of temperature, sodium chloride and pH on growth of Listeria monocytogenes in cabbage juice. Applied and Environmental Microbiology, 52, 59–63.PubMedPubMedCentralGoogle Scholar
  26. Corsetti, A., Perpetuini, G., Schirone, M., Tofalo, R., Suzzi, G. (2012). Application of starter cultures to table olive fermentation: an overview on the experimental studies. Front. Microbiol., 19(3), 248.Google Scholar
  27. Costilow, R. N., Gates, K., & Lacy, M. L. (1980). Molds in brine cucumbers. Cause of softening during air-purging of fermentations. Applied and Environmental Microbiology, 40, 417–422.PubMedPubMedCentralGoogle Scholar
  28. Daeschel, M. A., Fleming, H. P., & Potts, E. A. (1985). Compartmentalization of LAB and yeasts in the fermentation of brined cucumbers. Food Microbiology, 2(1), 77–84.CrossRefGoogle Scholar
  29. De Angelis, M., Campanella, D., Cosmai, L., Summo, C., Rizzello, C. G., & Caponio, F. (2015). Microbiota and metabolome of un-started and started Greek-type fermentation of Bella di Cerignola table olives. Food Microbiology, 52, 8–30.CrossRefGoogle Scholar
  30. De Angelis, M., Garruti, G., Minervini, F., Bonfrate, L., Portincasa, P., & Gobbetti, M. (2017). The food-gut human axis: The effects of diet on gut microbiota and metabolome. Current Medicinal Chemistry.  https://doi.org/10.2174/0929867324666170428103848.PubMedCrossRefGoogle Scholar
  31. De Bellis, P., Valerio, F., Sisto, A., Lonigro, S. L., & Lavermicocca, P. (2010). Probiotic table olives: Microbial populations adhering on olive surface in fermentation sets inoculated with the probiotic strain Lactobacillus paracasei IMPC2.1 in an industrial plant. International Journal of Food Microbiology, 140, 6–13.PubMedCrossRefGoogle Scholar
  32. De Castro, A., Montaño, A., Casado, F. J., Sánchez, A. H., & Rejano, L. (2002). Utilization of Enterococcus casseliflavus and Lactobacillus pentosus as starter culture for Spanish-style green olive fermentation. Food Microbiology, 19, 637–644.CrossRefGoogle Scholar
  33. DeBoy, R. T., Mongodin, E. F., Fouts, D. E., Tailford, L. E., Khouri, H., Emerson, J. B., Nohanoud, Y., Watkins, K., Henrissat, B., Gilbert, H. J., & Nelson, K. E. (2008). Insights into plant cell wall degradation from the genome sequence of the soil bacterium Cellvibrio japonicus. Journal of Bacteriology, 190, 5545–5463.CrossRefGoogle Scholar
  34. Delcour, J., Ferain, T., Deghorain, M., Palumbo, E., & Hols, P. (1999). The biosynthesis and functionality of the cell-wall of lactic acid bacteria. Antonie Van Leeuwenhoek, 76, 159–184.PubMedCrossRefGoogle Scholar
  35. Di Cagno, R., Coda, R., De Angelis, M., & Gobbetti, M. (2012). Exploitation of vegetables and fruits through lactic acid fermentation. Food Microbiology, 33(1), 1–10.  https://doi.org/10.1016/j.fm.2012.09.003. Epub 2012 Sep 17. Review.CrossRefPubMedGoogle Scholar
  36. Díaz-Muñiz, I., Kelling, R., Hale, S., Breidt, F., & McFeeters, R. F. (2007). Lactobacilli and tartrazine as causative agents of a red colored spoilage in cucumber pickle products. Journal of Food Science, 72, M240–M245.CrossRefGoogle Scholar
  37. Duran-Quintana, M. C., Gonzalez-Cancho, F., & Garrido-Fernandez, A. (1979). Natural black olives in brine. IX. Production of alambrado by some microorganisms isolated from fermentation brines. Grasas y Aceites, 30, 361–367.Google Scholar
  38. Etchells, J. L. (1941). Incidence of yeasts in cucumber fermentations. Food Research, 6(1), 95–104.CrossRefGoogle Scholar
  39. Etchells, J. L., & Bell, T. A. (1950a). Classification of yeasts from the fermentation of commercially brined cucumbers. Farlowia, 4(1), 87–112.Google Scholar
  40. Etchells, J. L., & Bell, T. A. (1950b). Film yeasts on commercial cucumber brines. Food Technology, 4(3), 77–83.Google Scholar
  41. Etchells, J. L., Fabian, F. W., & Jones, I. D. (1945). The Aerobacter fermentation of cucumbers during salting. Mich Agric. Expt Sta Tech Bull No. 200. 56 p.Google Scholar
  42. Etchells, J. L., Jones, I. D., & Lewis, W. M. (1947). Bacteriological changes during the fermentation of certain brined and salted vegetables. USDA Tech. Bull. No. 947: 64.Google Scholar
  43. Etchells, J. L., Costilow, R. N., & Bell, T. A. (1952). Identification of yeasts from commercial cucumber fermentations in northern brining areas. Farlowia, 4(2), 249–264.Google Scholar
  44. Etchells, J. L., Costilow, R. N., Anderson, T. E., & Bell, T. A. (1964). Pure culture fermentation of brined cucumbers. Applied Microbiology, 12(6), 523–535.PubMedPubMedCentralGoogle Scholar
  45. Etchells, J. L., Bell, T. A., Fleming, H. P., Kelling, R. E., & Thompson, R. L. (1973). Suggested procedure for the controlled fermentation of commercially brined pickling cucumbers—The use of starter cultures and reduction of carbon dioxide accumulation. Pickle Pak Science, 3(1), 4–14.Google Scholar
  46. Ewaschuk, J., Naylor, J., & Zello, G. (2005). D-lactate in human and ruminant metabolism. Journal of Nutrition, 135, 1619–1625.PubMedCrossRefGoogle Scholar
  47. Fenlon, D. R. (1985). Wild birds and silage as reservoirs of Listeria in the agricultural environment. Journal of Applied Microbiology, 59, 537–543.Google Scholar
  48. Filannino, P., Di Cagno, R., & Gobbetti, M. (2018). Metabolic and functional paths of LAB in plant foods: Get out of the labyrinth. Current Opinion in Biotechnology, 49, 64–72.PubMedCrossRefGoogle Scholar
  49. Fitch, M. D., & Fleming, S. E. (1999). Metabolism of short-chain fatty acids by rat colonic mucosa in vivo. American Journal of Physiology, 277, G31–G40.PubMedGoogle Scholar
  50. Fleming, H. P. (1979). Purging carbon dioxide from cucumber brines to prevent bloater damage—A review. Pickle Pak Science, 6(1), 8–22.Google Scholar
  51. Franco, W., & Pérez-Díaz, I. M. (2012). Role of selected oxidative yeasts and bacteria in cucumber secondary fermentation associated with spoilage of the fermented fruit. Food Microbiology, 32, 338–344.Google Scholar
  52. Franco, W., Pérez-Díaz, I. M., Johanningsmeier, S. D., & McFeeters, R. F. (2012). Characteristics of spoilage-associated secondary cucumber fermentation. Applied and Environmental Microbiology, 78 (4), 1273–1284.Google Scholar
  53. Fred, E. B., & Peterson, W. H. (1922). The production of pink sauerkraut by yeasts. Journal of Bacteriology, 7, 257–269.PubMedPubMedCentralGoogle Scholar
  54. Fuccio, F., Bevilacqua, A., Sinigaglia, M., & Corbo, M. R. (2016). Using a polynomial model for fungi from table olives. International Journal of Food Science & Technology, 51, 1276–1283.CrossRefGoogle Scholar
  55. Gänzle, M. G. (2015). Lactic metabolism revisited: Metabolism of lactic acid bacteria in food fermentations and food spoilage. Current Opinion in Food Science, 2, 106–117.CrossRefGoogle Scholar
  56. García, M., Serra, N., Pujola, M., & García, J. (1995). Analisis de la fibra alimentaría y sus fracciones por el método de Englyst. Alimentaria, 95, 45–50.Google Scholar
  57. Gardner, N. C., Savard, T., Obermeier, P., Caldwell, G., & Champagne, C. P. (2001). Selection and characterization of mixed starter cultures for lactic acid fermentation of carrot, cabbage, beet, and onion vegetable mixtures. International Journal of Food Microbiology, 64, 261–275.PubMedCrossRefGoogle Scholar
  58. Garrido Fernández, A., Fernández Díez, M. J., & Adams, R. M. (1997). Table olives: Production and processing. London: Chapman & Hall.CrossRefGoogle Scholar
  59. Geldreich, E. E., & Bordner, R. H. (1971). Fecal contamination of fruits and vegetables during cultivation and processing for market. A review. Journal of Milk and Food Technology, 34, 184–195.CrossRefGoogle Scholar
  60. Gililland, J. R., & Vaughn, R. H. (1943). Characteristics of butyric acid bacteria from olives. Journal of Bacteriology, 46, 315–322.PubMedPubMedCentralGoogle Scholar
  61. Golomb, B. L., Morales, V., Jung, A., Yau, B., Boundy-Mills, K. L., & Marco, M. L. (2013). Effects of pectinolytic yeast on the microbial composition and spoilage of olive fermentations. Food Microbiology, 33, 97–106.PubMedCrossRefGoogle Scholar
  62. Gonzalez-Cancho, F., Nosti-Vega, M., Fernandez-Diez, M. J., & Buzcu, N. (1970). Propionibacterium spp. associated with olive spoilage. Factors influencing their growth. Microbiología Española, 23, 233–252.Google Scholar
  63. Gorvitovskaia, A., Holmes, S. P., & Huse, S. M. (2016). Interpreting Prevotella and Bacteroides as biomarkers of diet and lifestyle. Microbiome, 4, 15.  https://doi.org/10.1186/s40168-016-0160-7.CrossRefPubMedPubMedCentralGoogle Scholar
  64. Grigelmo-Miguel, N., Gorinstein, S., & Martín-Belloso, O. (1999). Characterization of peach dietary fiber concentrate as a food ingredient. Food Chemistry, 65, 175–181.CrossRefGoogle Scholar
  65. Han, X., Yi, H., Zhang, L., Huang, W., Zhang, Y., Zhang, L., & Du, M. (2014). Improvement of fermented Chinese cabbage characteristics by selected starter cultures. Journal of Food Science, 79, M1387–M1392.PubMedCrossRefGoogle Scholar
  66. Hemert, S. V., Meijerink, M., Molenaar, D., Bron, P. A., deVos, P., Kleerebezem, M., Wells, J. M., & Marco, M. L. (2010). Identification of Lactobacillus plantarum genes modulating the cytokine response of human peripheral blood mononuclear cells. BMC Microbiology, 10, 293.  https://doi.org/10.1186/1471-2180-10-293.CrossRefPubMedPubMedCentralGoogle Scholar
  67. Hernandez, A., Martin, A., Aranda, E., Perez-Nevado, F., & Cordoba, M. G. (2007). Identification and characterization of yeast isolated from the elaboration of seasoned green table olives. Food Microbiology, 24, 346–351.PubMedCrossRefGoogle Scholar
  68. Holes, R. (2010). Nature’s spoils. The New Yorker. Retrieved November 22, 2010, from https://www.newyorker.com/magazine/2010/11/22/natures-spoils
  69. Hong, S. W., Choi, Y. J., Lee, H. W., Yang, J. H., & Lee, M. A. (2016). Microbial community structure of Korean cabbage kimchi and ingredients with denaturing gradient gel electrophoresis. Journal of Microbiology and Biotechnology, 26(6), 1057–1062.  https://doi.org/10.4014/jmb.1512.12035.CrossRefPubMedGoogle Scholar
  70. Ito, K. A., Chen, J. K., Lerke, P. A., Seeger, M. L., & Unverferth, J. A. (1976). Effect of acid and salt concentration in fresh-pack pickles on the growth of Clostridium botulinum spores. Applied and Environmental Microbiology, 32(1), 121–124.PubMedPubMedCentralGoogle Scholar
  71. Johanningsmeier, S. D., & McFeeters, R. F. (2013). Metabolism of lactic acid in fermented cucumbers by Lactobacillus buchneri and related species, potential spoilage organisms in reduced salt fermentations. Food Microbiology, 35(2), 129–135.PubMedCrossRefGoogle Scholar
  72. Johanningsmeier, S. D., & McFeeters, R. F. (2015). Metabolic footprinting of Lactobacillus buchneri strain LA1147 during anaerobic spoilage of fermented cucumbers. International Journal of Food Microbiology, 215, 40–48.  https://doi.org/10.1016/j.ijfoodmicro.2015.08.004.CrossRefPubMedGoogle Scholar
  73. Johanningsmeier, S. D., Fleming, H. P., Thompson, R. L., & McFeeters, R. F. (2005). Chemical and sensory properties of sauerkraut produced with Leuconostoc mesenteroides starter cultures of differing malolactic phenotypes. Journal of Food Science, 70(5), S343–S349.CrossRefGoogle Scholar
  74. Jung, J. Y., Lee, S. H., Lee, H. J., Seo, H. Y., Park, W. S., & Jeon, C. O. (2012). Effects of Leuconostoc mesenteroides starter cultures on microbial communities and metabolites during kimchi fermentation. International Journal of Food Microbiology, 153, 378–387.PubMedCrossRefGoogle Scholar
  75. Karl, J. P., Hatch, A. M., Arcidiacono, S. M., Pearce, S. C., Pantoja-Feliciano, I. G., Doherty, L. A., & Soares, J. W. (2018). Effects of psychological, environmental and physical stressors on the gut microbiota. Frontiers in Microbiology, 9, article 2013.  https://doi.org/10.3389/fmicb.2018.02013.CrossRefPubMedGoogle Scholar
  76. Khalaf, E. M., & Raizada, M. N. (2016). Taxonomic and functional diversity of cultured seed associated microbes of the cucurbit family. BMC Microbiology, 16, 131.  https://doi.org/10.1186/s12866-016-0743-2.CrossRefPubMedPubMedCentralGoogle Scholar
  77. King, A. D., & Vaughn, R. H. (1961). Media for detecting pectolytic Gram-negative bacteria associated with the softening of cucumbers, olives and other plant tissues. Journal of Food Science, 26, 635–643.CrossRefGoogle Scholar
  78. Kishino, S., Takeuchi, M., Park, S. B., Hirata, A., Kitamura, N., Kunisawa, J., Kiyono, H., Iwamoto, R., Isobe, Y., Arita, M., Arai, H., Ueda, K., Shima, J., Takahashi, S., Yokozeki, K., Shimizu, S., & Ogawa, J. (2013). Polyunsaturated fatty acid saturation by gut LAB affecting host lipid composition. Proceedings of the National Academy of Sciences of the United States of America, 110, 17808–17813.  https://doi.org/10.1073/pnas.1312937110.CrossRefPubMedPubMedCentralGoogle Scholar
  79. Konishi, M., Maruoka, N., Furuta, Y., Morita, T., Fukuoka, T., Imura, T., & Kitamoto, D. (2014). Biosurfactant-producing yeasts widely inhabit various vegetables and fruits. Bioscience, Biotechnology, and Biochemistry, 78(3), 516–523.  https://doi.org/10.1080/09168451.2014.882754. Epub 2014 Apr 16.CrossRefPubMedGoogle Scholar
  80. Kovatcheva-Datchary, P., Nilsson, A., Akrami, R., Lee, Y. S., De Vadder, F., Arora, T., Hallen, A., Martens, E., Björck, I., Bäckhed, F. (2015). Dietaryfiber-induced improvement in glucose metabolism is associated with increased abundance of Prevotella. Cell Metab. 22(6), 971–982.  https://doi.org/10.1016/j.cmet.2015.10.001. Epub2015Nov6.PubMedPubMedCentralCrossRefGoogle Scholar
  81. Kyung, K. H., Medina Pradas, E., Kim, S. G., Lee, Y. J., Kim, K. H., Choi, J. J., Cho, J. H., Chung, C. H., Barrangou, R., & Breidt, F. (2015). Microbial ecology of watery kimchi. Journal of Food Science, 80(5), M1031–M1038.  https://doi.org/10.1111/1750-3841.12848.CrossRefPubMedGoogle Scholar
  82. Leal-Sánchez, M. V., Jiménez-Díaz, R., Maldonado-Barragán, A., Garrido-Fernández, A., & Ruiz-Barba, J. L. (2002). Optimization of bacteriocin production by batch fermentation of Lactobacillus plantarum LPCO10. Applied and Environmental Microbiology, 68, 4465–4471.PubMedPubMedCentralCrossRefGoogle Scholar
  83. Leben, C. (1972). Micro-organisms associated with plant buds. Journal of General Virology, 71, 327–331.Google Scholar
  84. Lee, C. H. (2001). Fermentation technology in Korea. Seoul, South Korea: Korea University Press.Google Scholar
  85. Lee, S. A., Park, J., Chu, B., Kim, J. M., Joa, J. H., Sang, M. K., Song, J., & Weon, H. Y. (2016). Comparative analysis of bacterial diversity in the rhizosphere of tomato by culture-dependent and -independent approaches. Journal of Microbiology, 54(12), 823–831.CrossRefGoogle Scholar
  86. Lee, M., Song, J. H., Jung, M. Y., Lee, S. H., & Chang, J. Y. (2017). Large-scale targeted metagenomics analysis of bacterial ecological changes in 88 kimchi samples during fermentation. Food Microbiology, 66, 173–183.  https://doi.org/10.1016/j.fm.2017.05.002.CrossRefPubMedGoogle Scholar
  87. Lefeber, T., Janssens, M., Camu, N., & De Vuyst, L. (2010). Kinetic analysis of strains of lactic acid bacteria and acetic acid bacteria in cocoa pulp simulation media toward development of a starter culture for cocoa bean fermentation. Applied and Environmental Microbiology, 76(23), 7708–7716.  https://doi.org/10.1128/AEM.01206-10.CrossRefPubMedPubMedCentralGoogle Scholar
  88. Lemanceau, P., Barret, M., Mazurier, S., Mondy, S., Pivato, B., Fort, T., & Vacher, C. (2017). Plant communication with associated microbiota in the spermosphere, rhizosphere and phyllosphere. Advances in Botanical Research, 82, 101–133.  https://doi.org/10.1016/bs.abr.2016.10.007.CrossRefGoogle Scholar
  89. Levin, R. E., & Vaughn, R. H. (1966). Desulfovibrio aestuarii, the causative agent of hydrogen sulfide spoilage of fermenting olive brines. Journal of Food Science, 31, 768–772.CrossRefGoogle Scholar
  90. Lloyd-Price, J., Abu-Ali, G., & Huttenhower, C. (2016). The healthy human microbiome. Genome Medicine Review, 8(1), 51.  https://doi.org/10.1186/s13073-016-0307-y.CrossRefGoogle Scholar
  91. Lopez-Velasco, G., Carder, P. A., Welbaum, G. E., & Ponder, M. A. (2013). Diversity of the spinach (Spinacia oleracea) spermosphere and phyllosphere bacterial communities. FEMS Microbiology Letters, 346(2), 146–54.Google Scholar
  92. Lu, Z., Breidt, F., Fleming, H. P., Altermann, E., & Klaenhammer, T. R. (2003a). Isolation and characterization of a Lactobacillus plantarum bacteriophage, FJL-1, from a cucumber fermentation. International Journal of Food Microbiology, 84, 225–235.PubMedCrossRefGoogle Scholar
  93. Lu, Z., Breidt, F., Plengvidhya, V., & Fleming, H. P. (2003b). Bacteriophage ecology in commercial sauerkraut fermentations. Applied and Environmental Microbiology, 69, 3192–3202.PubMedPubMedCentralCrossRefGoogle Scholar
  94. Lu, Z., Altermann, E., Breidt, F., Predki, P., Fleming, H. P., & Klaenhammer, T. R. (2005). Sequence analysis of the Lactobacillus plantarum bacteriophage FJL-1. Gene, 348, 45–54.PubMedCrossRefGoogle Scholar
  95. Lu, Z., Altermann, E., Breidt, F., & Kozyavkin, S. (2010). Sequence analysis of Leuconostoc mesenteroides bacteriophage (phi)1-A4 isolated from industrial vegetable fermentation. Applied and Environmental Microbiology, 76, 1955–1966.PubMedPubMedCentralCrossRefGoogle Scholar
  96. Lu, Z., Pérez-Díaz, I. M., Hayes, J. S., & Breidt, F. (2012). Bacteriophage ecology in a commercial cucumber fermentation. Applied and Environmental Microbiology, 78(24), 8571–8578.PubMedPubMedCentralCrossRefGoogle Scholar
  97. Lund, J., Aas, V., Tingstad, R. H., Van Hees, A., & Nikolić, N. (2018). Utilization of lactic acid in human myotubes and interplay with glucose and fatty acid metabolism. Nature, 8, 9814.  https://doi.org/10.1038/s41598-018-28249-5.CrossRefGoogle Scholar
  98. Manani, T. A., Collison, E. K., & Mpuchane, S. (2006). Microflora of minimally processed frozen vegetables sold in Gaborone, Botswana. Journal of Food Protection, 69(11), 2581–2586.Google Scholar
  99. Marco, M. L., Bongers, R. S., deVos, W. M., & Kleerebezem, M. (2006). Spatial and temporal expression of Lactobacillus plantarum genes in the gastrointestinal tracts of mice. Food Microbiology, 73(1), 124–132.  https://doi.org/10.1128/AEM.01475-06.CrossRefGoogle Scholar
  100. Mark, E. M., Vaughn, R. H., Miller, M. W., & Phaff, H. I. (1956). Yeasts occurring in brines during the fermentation and storage of green olives. Food Technology, 10, 416.Google Scholar
  101. Marquina, D., Peres, C., Caldas, F. V., Marqjes, J. F., Peipjado, J. M., & Spencer-Martins, I. (1992). Characterization of the yeast population in olive brines. Letters in Applied Microbiology, 14, 279–283.CrossRefGoogle Scholar
  102. Martínez-Villaluenga, C., Peñas, E., Sidro, B., Ullate, M., Frias, J., & Vidal-Valverde, C. (2012). White cabbage fermentation improves ascorbic content, antioxidant and nitric oxide production inhibitory activity in LPS-induced macrophages. LWT- Food Science and Technology, 46, 77–83.CrossRefGoogle Scholar
  103. Mattos, F. R., Fasina, O. O., Reina, L. D., Fleming, H. P., Breidt, F., Damasceno, G. S., & Passos, F. V. (2005). Heat transfer and microbial kinetics modeling to determine the location of microorganisms within cucumber fruit. Journal of Food Science, 70(5), E324–E330.CrossRefGoogle Scholar
  104. McDonald, L. C., Fleming, H. P., & Hassan, H. M. (1990). Acid tolerance of Leuconostoc mesenteroides and Lactobacillus plantarum. Applied and Environmental Microbiology, 56(7), 2120–2124.PubMedPubMedCentralGoogle Scholar
  105. McDonald, D., Hyde, E., Debelius, J. W., Morton, J. T., Gonzalez, A., Ackermann, G., Aksenov, A. A., Behsaz, B., Brennan, C., Chen, Y., DeRight Goldasich, L., Dorrestein, P. C., Dunn, R. R., Fahimipour, A. K., Gaffney, J., Gilbert, J. A., Gogul, G., Green, J. L., Hugenholtz, P., Humphrey, G., Huttenhower, C., Jackson, M. A., Janssen, S., Jeste, D. V., Jiang, L., Kelley, S. T., Knights, D., Kosciolek, T., Ladau, J., Leach, J., Marotz, C., Meleshko, D., Melnik, A. V., Metcalf, J. L., Mohimani, H., Montassier, E., Navas-Molina, J., Nguyen, T. T., Peddada, S., Pevzner, P., Pollard, K. S., Rahnavard, G., Robbins-Pianka, A., Sangwan, N., Shorenstein, J., Smarr, L., Song, S. J., Spector, T., Swafford, A. D., Thackray, V. G., Thompson, L. R., Tripathi, A., Vázquez-Baeza, Y., Vrbanac, A., Wischmeyer, P., Wolfe, E., Zhu, Q., American Gut Consortium, & Knight, R. (2018). American gut: An open platform for citizen. mSystems, 3(3), pii: e00031-18.  https://doi.org/10.1128/mSystems.00031-18.CrossRefGoogle Scholar
  106. McFeeters, R. F., & Pérez-Díaz, I. M. (2010). Fermentation of cucumbers brined with calcium chloride instead of sodium chloride. Journal of Food Science, 75(3), C291–C296.PubMedCrossRefGoogle Scholar
  107. Medina-Pradas, E., & Arroyo-López, F. N. (2015). Presence of toxic microbial metabolites in table olives. Frontiers in Microbiology, 6, 873.  https://doi.org/10.3389/fmicb.2015.00873.CrossRefPubMedPubMedCentralGoogle Scholar
  108. Medina-Pradas, E., Pérez-Díaz, I. M., Breidt, F., Hayes, J. S., Franco, W., Butz, N., & Azcarate-Peril, A. (2016). Bacterial ecology of fermented cucumber rising pH spoilage as determined by non-culture based methods. Journal of Food Science, 80(1), M121–M129.  https://doi.org/10.1111/1750-3841.13158.CrossRefGoogle Scholar
  109. Meneley, J. C., & Stanghellini, M. E. (1974). Detection of enteric bacteria within locular tissue of healthy cucumbers. Journal of Food Science, 39, 1267.CrossRefGoogle Scholar
  110. Montaño, A., Sánchez, A. H., Rejano, L., & de Castro, A. (1997). Processing and storage of lye-treated carrots fermented by a mixed starter culture. International Journal of Food Microbiology, 35, 83–90.PubMedCrossRefGoogle Scholar
  111. Moon, S. H., Chang, M., Kim, H. Y., & Chang, H. C. (2014). Pichia kudriavzevii is the major yeast involved in film-formation, off-odor production, and texture-softening in over-ripened Kimchi. Food Science and Biotechnology, 23, 489–497.CrossRefGoogle Scholar
  112. Mundt, O. (1970). LAB associated with raw plant food material. Journal of Milk and Food Technology, 33, 550–553.CrossRefGoogle Scholar
  113. Mundt, J. O., & Hammer, J. L. (1968). Lactobacilli on plants. Journal of Applied Microbiology, 16(9), 1326–1330.Google Scholar
  114. Nanniga, N. (2010). Did van Leeuwenhoek observe yeast cells in 1680? In Small things considered. American Society for Microbiology. Retrieved from http://schaechter.asmblog.org/schaechter/2010/04/did-van-leeuwenhoek-observe-yeast-cells-in-1680.html
  115. Nychas, G. J. E., Panagou, E. Z., Parker, M. L., Waldron, K. W., & Tassou, C. C. (2002). Microbial colonization of naturally black olives during fermentation and associated biochemical activities in the cover brine. Letters in Applied Microbiology, 34, 173–177.PubMedCrossRefGoogle Scholar
  116. Ofek, M., Voronov-Goldman, M., Hadar, Y., & Minz, D. (2014). Host signature effect on plant root-associated microbiomes revealed through analyses of resident vs. active communities. Environmental Microbiology, 16(7), 2157–2167.  https://doi.org/10.1111/1462-2920.12228.CrossRefPubMedGoogle Scholar
  117. Olsen, M., & Pérez-Díaz, I. M. (2009). Influence of microbial growth in the redox potential of fermented cucumbers. Journal of Food Science, 74(4), M149–M153.PubMedCrossRefGoogle Scholar
  118. Ottesen, A., R., Gorham, S., reed, E., Newell, M. J., Ramachandran, P., Canida T., Allard, M., Evans, P., Brown, E., White, J. R. (2016). Using a control to better understand phyllosphere micorbiota. PloS ONE 11(9), e0163482.  https://doi.org/10.1371/journal.pone.0163482.PubMedPubMedCentralCrossRefGoogle Scholar
  119. Palomino, J. M., Toledo del Árbol, J., Benomar, N., Abriouel, H., Martínez Cañamero, M., Gálvez, A., & Pérez Pulido, R. (2015). Application of Lactobacillus plantarum Lb9 as starter culture in caper berry fermentation. LWT-Food Science and Technology, 60, 788–794.CrossRefGoogle Scholar
  120. Panagou, E. Z., Schillinger, U., Franz, C. M. A. P., & Nychas, G. J. E. (2008). Microbiological and biochemical profile of cv. Conservolea naturally black olives during controlled fermentation with selected strains of LAB. Food Microbiology, 25, 348–358.PubMedCrossRefGoogle Scholar
  121. Park, E. J., Kim, K. H., Abell, G. C. J., Kim, M. S., Roh, S. W., & Bae, J. W. (2010). Metagenomic analysis of the viral communities in fermented foods. Applied and Environmental Microbiology, 77(4), 1284–1291.  https://doi.org/10.1128/AEM.01859-10.CrossRefPubMedPubMedCentralGoogle Scholar
  122. Park, E. J., Chun, J., Cha, C. J., Park, W. S., Jeon, C. O., & Bae, J. W. (2012). Bacterial community analysis during fermentation of ten representative kinds of kimchi with barcoded pyrosequencing. Food Microbiology, 30(1), 197–204.  https://doi.org/10.1016/j.fm.2011.10.011.CrossRefPubMedGoogle Scholar
  123. Pederson, C. S., & Albury, M. N. (1969). The sauerkraut fermentation. N.Y. Agric. Expt. Sta. Bull. 824.Google Scholar
  124. Pérez Pulido, R., Omar, N. B., Abriouel, H., Lucas López, R., Martínez Cañamero, M., & Gálvez, A. (2005). Microbiological study of lactic acid fermentation of caper berries by molecular and culture-dependent methods. Applied and Environmental Microbiology, 71, 7872–7879.PubMedPubMedCentralCrossRefGoogle Scholar
  125. Pérez-Díaz, I. M., Breidt, F., Buescher, R. W., Arroyo-López, F. N., Jimenez-Diaz, R., Bautista-Gallego, J., Garrido-Fernandez, A., Yoon, S., & Johanningsmeier, S. D. (2014). Fermented and acidified vegetables (Chapter 51). In F. Pouch Downes & K. A. Ito (Eds.), Compendium of methods for the microbiological examination of foods (5th ed.). American Public Health Association.Google Scholar
  126. Pérez-Díaz, I. M., McFeeters, R. F., Moeller, L., Johanningsmeier, S. D., Hayes, J. S., Fornea, D., Gilbert, C., Custis, N., Beene, K., & Bass, D. (2015). Commercial scale cucumber fermentations brined with calcium chloride instead of sodium chloride. Journal of Food Science, 80(12), M2827–M2836.  https://doi.org/10.1111/1750-3841.13107.CrossRefPubMedGoogle Scholar
  127. Pérez-Díaz, I. M., Hayes, J. S., Medina-Pradas, E., Anekella, K., Daughtry, K. V., Dieck, S., Levi, M., Price, R., Butz, N., Lu, Z., & Azcarate-Peril, M. (2016). Reassessment of the succession of lactic acid bacteria in commercial cucumber fermentations and physiological and genomic features associated with their dominance. Food Microbiology, 63, 217–227.  https://doi.org/10.1016/j.fm.2016.11.025.CrossRefPubMedGoogle Scholar
  128. Pérez-Díaz, I. M., Hayes, J. S., Medina, E., Webber, A. M., Butz, N., Dickey, A. N., Lu, Z., & Azcarate-Peril, M. A. (2018). Assessment of the non-LAB microbiota in fresh cucumbers and commercially fermented cucumber pickles brined with 6% NaCl. Food Microbiology, 77, 10–20.  https://doi.org/10.1016/j.fm.2018.08.003.CrossRefPubMedGoogle Scholar
  129. Plengvidhya, V., Breidt, F., Lu, Z., & Fleming, H. P. (2007). DNA fingerprinting of LAB in sauerkraut fermentations. Applied and Environmental Microbiology, 73(23), 7697–7702.PubMedPubMedCentralCrossRefGoogle Scholar
  130. Raj, K. C., Ingram, L. O., & Mauphin-Furlow, J. A. (2001). Pyruvate decarboxylase: A key enzyme for the oxidative metabolism of lactic acid by Acetobacter pasteurianus. Archives of Microbiology, 176, 443–451.CrossRefGoogle Scholar
  131. Rastogi, G., Sbodio, A., Tech, J. J., Suslow, T. V., Coaker, G. L., & Leveau, J. H. (2012). Leaf microbiota in an agroecosystem: spatiotemporal variation in bacterial community composition on field-grown lettuce. The ISME Journal, 6(10), 1812–1822.  https://doi.org/10.1038/ismej.2012.32.PubMedPubMedCentralCrossRefGoogle Scholar
  132. Reina, L. D., Fleming, H. P., & Breidt, F. Jr. (2002). Bacterial contamination of cucumber fruit through adhesion. Journal of Food Protection, 65(12), 1881–1887.Google Scholar
  133. Rincón-León, F. (2003). Functional foods. In B. Caballero (Ed.), Encyclopedia of food science and nutrition (2nd ed., pp. 2827–2832). New York: Academic Press.  https://doi.org/10.1016/B0-12-227055-X/01328-6.CrossRefGoogle Scholar
  134. Roberfroid, M. (1993). Dietary fiber, inulin, and oligofructose: A review comparing their physiological effects. Critical Reviews in Food Science and Nutrition, 33(2), 103–148. Review. Erratum in: Critical Reviews in Food Science and Nutrition 1993; 33(6):553.PubMedCrossRefGoogle Scholar
  135. Rodríguez-Gómez, F., Romero Gil, V., Bautista Gallego, J., García García, P., Garrido Fernández, A., & Arroyo López, F. N. (2014). Production of potential probiotic Spanish-style green table olives at pilot plant scale using multifunctional starters. Food Microbiology, 44, 278–287.PubMedCrossRefGoogle Scholar
  136. Rossi, M., Martinez-Martinez, D., Amaretti, A., Ulrici, A., Raimondi, S., & Moya, A. (2016). Mining metagenomics whole genome sequences revealed subdominant but constant Lactobacillus population in the human gut microbiota. Environmental Microbiology Reports, 8, 399–406.PubMedCrossRefGoogle Scholar
  137. Ruiz-Cruz, J., & Gonzalez-Cancho, F. (1969). The metabolism of yeasts isolated from the brine of pickled Spanish-type green olives. I. The assimilation of lactic, acetic and citric acids. Grasas y Aceites, 20, 6–11.Google Scholar
  138. Salonen, A., & deVos, W. M. (2014). Impact of diet on human intestinal microbiota and health. Annual Review of Food Science and Technology, 5, 239–262.  https://doi.org/10.1146/annurev-food-030212-182554.CrossRefPubMedGoogle Scholar
  139. Samish Z., Etinger-Tulczynsky R. (1962). Bacteria within fermenting tomatoes and cucumbers. In: Leitch J. M. Proc. 1st Int. Conm. Food Scie. Technol. Gordon & Breach Science Publications, New York. 2: 373.Google Scholar
  140. Samish, Z., Etinger-Tulczynska, R., & Bick, M. (1963). The microflora within the tissue of fruits and vegetables. Journal of Food Science, 28(3), 259–266.Google Scholar
  141. Seelinger, H. P. R., & Jones, D. (1986). Genus Listeria, p. In P. H. A. Sneath, N. S. Mair, M. E. Sharpe, & J. G. Holt (Eds.), Bergey’s manual of systematic bacteriology (Vol. 2, p. 1235). Baltimore, MD: Williams and Wilkins.Google Scholar
  142. Sender, R., Fuchs, S., & Milo, R. (2016). Revised estimates for the number of human and bacterial cells in the body. PLoS Biology, 14(8), e1002533.  https://doi.org/10.1371/journal.pbio.1002533.CrossRefPubMedPubMedCentralGoogle Scholar
  143. Shi, X., Wu, Z., Namvar, A., Kostrzynska, M., Dunfield, K., & Warriner, K. (2009). Microbial population profiles of the microflora associated with pre- and postharvest tomatoes contaminated with Salmonella typhimurium or Salmonella montevideo. Journal of Applied Microbiology, 107(1), 329–338.Google Scholar
  144. Siezen, R. J., & van Hylckama Vlieg, J. E. (2011). Genomic diversity and versatility of Lactobacillus plantarum, a natural metabolic engineer. Microbial Cell Factories, 10 (Suppl 1), S3. PMC3271238.  https://doi.org/10.1186/1475-2859-10-S1-S3.PubMedPubMedCentralCrossRefGoogle Scholar
  145. Sonnenburg, E. D., Smits, S. A., Tikhonov, M., Higginbottom, S. K., Wingreen, N. S., & Sonnenburg, J. L. (2016). Diet-induced extinctions in the gut microbiota compound over generations. Nature, 529, 212–215.  https://doi.org/10.1038/nature16504.CrossRefPubMedPubMedCentralGoogle Scholar
  146. Spencer, C., Randic, L., Butler, J. (2009). Survival following profound lactic acidosis and cardiac arrest: does metformin really induce lactic acidosis?J Int. Care Soc. 10(2):115–117.CrossRefGoogle Scholar
  147. Stamer, J. R., Hrazdina, G., & Stoyla, B. O. (1973). Induction of red color formation in cabbage juice by Lactobacillus brevis and its relationship to pink sauerkraut. Applied Microbiology, 26, 161–166.PubMedPubMedCentralGoogle Scholar
  148. Tingirikari, J. M. R. (2018). Microbiota-accessible pectic poly- and oligosaccharides in gut health. Food & Function.  https://doi.org/10.1039/c8fo01296b.CrossRefGoogle Scholar
  149. Uribarri, J., Oh, M., & Carroll, H. (1998). D-lactic acidosis. Medicine, 77, 73–82.PubMedCrossRefGoogle Scholar
  150. Vaughn, R. H., Won, W. D., Spencer, F. B., Pappagranis, D., Foda, I. O., & Krumperman, P. M. (1953). Lactobacilllus plantarum, the cause of yeast spots on olives. Applied Microbiology, 1, 82–85.PubMedPubMedCentralGoogle Scholar
  151. Vaughn, R. H., King, A. D., Nagel, C. W., Ng, H., Levin, R. E., Macmilla, J. D., & York, G. K. (1969). Gram-negative bacteria associated with sloughing, a softening of Californian ripe olives. Journal of Food Science, 34, 224–227.CrossRefGoogle Scholar
  152. Vaughn, R. H., Stevenson, K. E., Dave, B. A., & Park, H. C. (1972). Fermenting yeast associated with softening and gas-pocket formation in olives. Applied Microbiology, 23, 316–320.PubMedPubMedCentralGoogle Scholar
  153. Vega Leal-Sánchez, M., Ruiz Barba, J. L., Sánchez, A. H., Rejano, L., Jiménez Díaz, R., & Garrido-Fernandez, A. (2003). Fermentation profile and optimization of green olive fermentation using Lactobacillus plantarum LPCO10 as a starter culture. Food Microbiology, 20, 421–430.CrossRefGoogle Scholar
  154. Verbeke, K. A., Boobis, A. R., Chiodini, A., Edwards, C. A., Franck, A., Kleerebezem, M., Nauta, A., Raes, J., van Tol, E. A., & Tuohy, K. M. (2015). Towards microbial fermentation metabolites as markers for health benefits of prebiotics. Nutrition Research Reviews, 28, 42–66.  https://doi.org/10.1017/S095442415000037.
  155. Viuda-Martos, M., López-Marcos, M. C., Fernández-López, J., Sendra, E., López-Vargas, J. H., & Pérez-Alvarez, J. A. (2010). Role of fiber in cardiovascular diseases: A review. Comprehensive Reviews in Food Science and Food Safety, 9(2), 240–258.CrossRefGoogle Scholar
  156. Weiss, A., Hertel, C., Grothe, S., Ha, D., Hammes, W. P. (2007). Characterization of the cultivable micorbiota of sprouts and their potential for application as protective cultures. Syst. Appl. Micorbiol. 30(6), 483–493.PubMedCrossRefGoogle Scholar
  157. Welshimer, H. J. (1968). Isolation of Listeria monocytogenes from vegetation. Journal of Bacteriology, 95, 300–303.PubMedPubMedCentralGoogle Scholar
  158. Welshimer, H. J., & Donker-Voet, I. (1971). Listeria monocytogenes in nature. Applied Microbiology, 21, 516–519.PubMedPubMedCentralGoogle Scholar
  159. West, N. S., Gililland, J. R., & Vaughn, R. H. (1941). Characteristics of coliform bacteria from olives. Journal of Bacteriology, 41, 341–353.PubMedPubMedCentralGoogle Scholar
  160. Yoon, S. S., Barrangou-Poueys, R., Breidt, F., Klaenhammer, T. R., & Fleming, H. P. (2002). Isolation and characterization of bacteriophages from fermenting sauerkraut. Applied and Environmental Microbiology, 68, 973–976.PubMedPubMedCentralCrossRefGoogle Scholar
  161. Yoon, S. S., Barrangou-Poueys, R., Breidt, F., & Fleming, H. P. (2007). Detection and characterization of a lytic Pediococcus bacteriophage from the fermenting cucumber brine. Journal of Microbiology and Biotechnology, 17, 262–270.PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.USDA-ARS Food Science Research UnitRaleighUSA

Personalised recommendations