Fermented Dairy Products

  • C. Peláez
  • M. C. Martínez-Cuesta
  • T. RequenaEmail author


The microbiota of fermented dairy products contributes to the safety, flavor, and organoleptic qualities of the products. Moreover, metabolites obtained from the fermentation process enhance the milk nutritive value and digestibility, whereas dairy microorganisms could be the perfect carriers for reseeding the gut microbiota. The structural food matrix of fermented milk facilitates the delivery of viable microorganisms to the intestinal tract. Fermented dairy products may be beneficial to human health by improving lactose intolerance symptoms and for the production of bioactive compounds such as vitamins, gamma-amino butyric acid, exopolysaccharides, and bioactive peptides, among others. Also, fermented dairy products contribute to the modulation of the gut microbiota and the prevention of infections, inflammation, and cardiometabolic diseases. Furthermore, fermented dairy products constitute the hallmark of probiotics supply in the food market.


Fermented dairy Yogurt Kefir Cheese Probiotics Bioactive compounds 



This work was supported by the Spanish Ministry (Project AGL2016-75951-R), CDTI (INDEKA IDI-20190077) and CYTED (Project P917PTE0537/PCIN-2017-075).


  1. Adegboye, A. R., Christensen, L. B., Holm-Pedersen, P., Avlund, K., Boucher, B. J., & Heitmann, B. L. (2012). Intake of dairy products in relation to periodontitis in older Danish adults. Nutrients, 4(9), 1219–1229.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Akbari, E., Asemi, Z., Kakhaki, R. D., Bahmani, F., Kouchaki, E., Tamtaji, O. R., Hamidi, G. A., & Salami, M. (2016). Effect of probiotic supplementation on cognitive function and metabolic status in Alzheimer’s disease: A randomized, double-blind and controlled trial. Frontiers in Aging Neuroscience, 8, 256.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Alvaro, E., Andrieux, C., Rochet, V., Rigottier-Gois, L., Lepercq, P., Sutren, M., Galan, P., Duval, Y., Juste, C., & Dore, J. (2007). Composition and metabolism of the intestinal microbiota in consumers and non-consumers of yogurt. The British Journal of Nutrition, 97(1), 126–133.PubMedCrossRefGoogle Scholar
  4. Arqués, J. L., Rodríguez, E., Langa, S., Landete, J. M., & Medina, M. (2015). Antimicrobial activity of lactic acid bacteria in dairy products and gut: Effect on pathogens. BioMed Research International, 2015, 584183.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Arth, A., Kancherla, V., Pachon, H., Zimmerman, S., Johnson, Q., & Oakley, G. P., Jr. (2016). A 2015 global update on folic acid-preventable spina bifida and anencephaly. Birth Defects Research. Part A, Clinical and Molecular Teratology, 106(7), 520–529.PubMedCrossRefGoogle Scholar
  6. Aryana, K. J., & Olson, D. W. (2017). A 100-year review: Yogurt and other cultured dairy products. Journal of Dairy Science, 100(12), 9987–10013.PubMedCrossRefGoogle Scholar
  7. Atta, C. A., Fiest, K. M., Frolkis, A. D., Jette, N., Pringsheim, T., St Germaine-Smith, C., Rajapakse, T., Kaplan, G. G., & Metcalfe, A. (2016). Global birth prevalence of spina bifida by folic acid fortification status: A systematic review and meta-analysis. American Journal of Public Health, 106(1), e24–e34.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Azcarate-Peril, M. A., Ritter, A. J., Savaiano, D., Monteagudo-Mera, A., Anderson, C., Magness, S. T., & Klaenhammer, T. R. (2017). Impact of short-chain galactooligosaccharides on the gut microbiome of lactose-intolerant individuals. Proceedings of the National Academy of Sciences of the United States of America, 114(3), E367–E375.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Bambury, A., Sandhu, K., Cryan, J. F., & Dinan, T. G. (2018). Finding the needle in the haystack: Systematic identification of psychobiotics. British Journal of Pharmacology, 175, 4430–4438.PubMedCrossRefGoogle Scholar
  10. Beermann, C., & Hartung, J. (2013). Physiological properties of milk ingredients released by fermentation. Food & Function, 4(2), 185–199.CrossRefGoogle Scholar
  11. BNF. (2015). Healthy eating. Retrieved March 20, 2015, from
  12. Bourrie, B. C., Willing, B. P., & Cotter, P. D. (2016). The microbiota and health promoting characteristics of the fermented beverage kefir. Frontiers in Microbiology, 7, 647.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Cameron, S., Ried, K., Worsley, A., & Topping, D. (2004). Consumption of foods by young children with diagnosed campylobacter infection—A pilot case-control study. Public Health Nutrition, 7(1), 85–89.PubMedCrossRefGoogle Scholar
  14. Cárdenas, N., Calzada, J., Peiroten, A., Jiménez, E., Escudero, R., Rodríguez, J. M., Medina, M., & Fernández, L. (2014). Development of a potential probiotic fresh cheese using two Lactobacillus salivarius strains isolated from human milk. BioMed Research International, 2014, 801918.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Carminati, D., Giraffa, G., Zago, M., Marco, M. B., Guglielmotti, D., Binetti, A., & Reinheimer, J. (2016). Lactic acid bacteria for dairy fermentations: Specialized starter cultures to improve dairy products. In F. Mozzi, R. R. Raya, & G. M. Vignolo (Eds.), Biotechnology of lactic acid bacteria: Novel applications (2nd ed., pp. 191–208). Chichester, UK: Wiley.Google Scholar
  16. Castro, J. M., Tornadijo, M. E., Fresno, J. M., & Sandoval, H. (2015). Biocheese: A food probiotic carrier. BioMed Research International, 2015, 723056.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Chen, M., Sun, Q., Giovannucci, E., Mozaffarian, D., Manson, J. E., Willett, W. C., & Hu, F. B. (2014). Dairy consumption and risk of type 2 diabetes: 3 cohorts of US adults and an updated meta-analysis. BMC Medicine, 12, 215.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Cheplin, H. A., & Rettger, L. F. (1920). Studies on the transformation of the intestinal flora, with special reference to the implantation of Bacillus acidophilus, II. Feeding experiments on man. Proceedings of the National Academy of Sciences of the United States of America, 6, 704–705.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Chilton, S. N., Burton, J. P., & Reid, G. (2015). Inclusion of fermented foods in food guides around the world. Nutrients, 7(1), 390–404.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Codex-Alimentarius. (2003). CODEX standard for fermented milks. Codex Stan 243–2003. Retrieved from,
  21. del Campo, R., Bravo, D., Canton, R., Ruiz-Garbajosa, P., Garcia-Albiach, R., Montesi-Libois, A., Yuste, F. J., Abraira, V., & Baquero, F. (2005). Scarce evidence of yogurt lactic acid bacteria in human feces after daily yogurt consumption by healthy volunteers. Applied and Environmental Microbiology, 71(1), 547–549.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Dhakal, R., Bajpai, V. K., & Baek, K. H. (2012). Production of GABA (gamma-aminobutyric acid) by microorganisms: A review. Brazilian Journal of Microbiology, 43(4), 1230–1241.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Diana, M., Rafecas, M., Arco, C., & Quilez, J. (2014). Free amino acid profile of Spanish artisanal cheeses: Importance of gamma-aminobutyric acid (GABA) and ornithine content. Journal of Food Composition and Analysis, 35(2), 94–100.CrossRefGoogle Scholar
  24. Diaz Heijtz, R., Wang, S., Anuar, F., Qian, Y., Bjorkholm, B., Samuelsson, A., Hibberd, M. L., Forssberg, H., & Pettersson, S. (2011). Normal gut microbiota modulates brain development and behavior. Proceedings of the National Academy of Sciences of the United States of America, 108(7), 3047–3052.PubMedCrossRefGoogle Scholar
  25. Diaz-Lopez, A., Bullo, M., Martinez-Gonzalez, M. A., Corella, D., Estruch, R., Fito, M., Gomez-Gracia, E., Fiol, M., Garcia de la Corte, F. J., Ros, E., Babio, N., Serra-Majem, L., Pinto, X., Munoz, M. A., Frances, F., Buil-Cosiales, P., & Salas-Salvado, J. (2016). Dairy product consumption and risk of type 2 diabetes in an elderly Spanish Mediterranean population at high cardiovascular risk. European Journal of Nutrition, 55(1), 349–360.PubMedCrossRefGoogle Scholar
  26. Dimitrov, Z., Chorbadjiyska, E., Gotova, I., Pashova, K., & Ilieva, S. (2015). Selected adjunct cultures remarkably increase the content of bioactive peptides in Bulgarian white brined cheese. Biotechnology & Biotechnological Equipment, 29(1), 78–83.CrossRefGoogle Scholar
  27. EFSA. (2010). Scientific opinion on the substantiation of health claims related to live yoghurt cultures and improved lactose digestion. EFSA Journal, 8(10), 1763.Google Scholar
  28. El Hage, R., Hernandez-Sanabria, E., & Van de Wiele, T. (2017). Emerging trends in “Smart probiotics”: Functional consideration for the development of novel health and industrial applications. Frontiers in Microbiology, 8, 1889.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Elli, M., Callegari, M. L., Ferrari, S., Bessi, E., Cattivelli, D., Soldi, S., Morelli, L., Goupil Feuillerat, N., & Antoine, J. M. (2006). Survival of yogurt bacteria in the human gut. Applied and Environmental Microbiology, 72(7), 5113–5117.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Fang, X. X., Rioux, L. E., Labrie, S., & Turgeon, S. L. (2016). Commercial cheeses with different texture have different disintegration and protein/peptide release rates during simulated in vitro digestion. International Dairy Journal, 56, 169–178.CrossRefGoogle Scholar
  31. Fekete, A. A., Givens, D. I., & Lovegrove, J. A. (2015). Casein-derived lactotripeptides reduce systolic and diastolic blood pressure in a meta-analysis of randomised clinical trials. Nutrients, 7(1), 659–681.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Fernández, M., Hudson, J. A., Korpela, R., & de los Reyes-Gavilán, C. G. (2015). Impact on human health of microorganisms present in fermented dairy products: An overview. BioMed Research International, 2015, 412714.PubMedPubMedCentralGoogle Scholar
  33. Franciosi, E., Carafa, I., Nardin, T., Schiavon, S., Poznanski, E., Cavazza, A., Larcher, R., & Tuohy, K. M. (2015). Biodiversity and gamma-aminobutyric acid production by lactic acid bacteria isolated from traditional alpine raw cow’s milk cheeses. BioMed Research International, 2015, 625740.PubMedPubMedCentralCrossRefGoogle Scholar
  34. Gandhi, A., & Shah, N. P. (2014). Cell growth and proteolytic activity of Lactobacillus acidophilus, Lactobacillus helveticus, Lactobacillus delbrueckii ssp bulgaricus, and Streptococcus thermophilus in milk as affected by supplementation with peptide fractions. International Journal of Food Sciences and Nutrition, 65(8), 937–941.PubMedCrossRefGoogle Scholar
  35. Guarner, F., Perdigon, G., Corthier, G., Salminen, S., Koletzko, B., & Morelli, L. (2005). Should yoghurt cultures be considered probiotic? The British Journal of Nutrition, 93(6), 783–786.PubMedCrossRefGoogle Scholar
  36. Hagi, T., Kobayashi, M., & Nomura, M. (2016). Metabolome analysis of milk fermented by gamma-aminobutyric acid-producing Lactococcus lactis. Journal of Dairy Science, 99(2), 994–1001.PubMedCrossRefGoogle Scholar
  37. Health-Canada. (2011). Eating well with Canada’s food guide. Retrieved February 26, 2018, from
  38. Heintz-Buschart, A., & Wilmes, P. (2018). Human gut microbiome: Function matters. Trends in Microbiology, 26(7), 563–574.PubMedCrossRefGoogle Scholar
  39. Hill, C., Guarner, F., Reid, G., Gibson, G. R., Merenstein, D. J., Pot, B., Morelli, L., Canani, R. B., Flint, H. J., Salminen, S., Calder, P. C., & Sanders, M. E. (2014). Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature Reviews. Gastroenterology & Hepatology, 11(8), 506–514.CrossRefGoogle Scholar
  40. Hill, D., Sugrue, I., Arendt, E., Hill, C., Stanton, C., & Ross, R. P. (2017). Recent advances in microbial fermentation for dairy and health. F1000Research, 6, 751.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Hillman, E. T., Lu, H., Yao, T., & Nakatsu, C. H. (2017). Microbial ecology along the gastrointestinal tract. Microbes and Environments, 32(4), 300–313.PubMedPubMedCentralCrossRefGoogle Scholar
  42. Iyer, R., & Tomar, S. K. (2009). Folate: A functional food constituent. Journal of Food Science, 74(9), R114–R122.PubMedCrossRefGoogle Scholar
  43. Kailasapathy, K., & Chin, J. (2000). Survival and therapeutic potential of probiotic organisms with reference to Lactobacillus acidophilus and Bifidobacterium spp. Immunology and Cell Biology, 78(1), 80–88.PubMedCrossRefGoogle Scholar
  44. Karimi, R., Mortazavian, A. M., & Da Cruz, A. G. (2011). Viability of probiotic microorganisms in cheese during production and storage: A review. Dairy Science & Technology, 91(3), 283–308.CrossRefGoogle Scholar
  45. Kesenkas, H., Gursoy, O., & Ozbas, H. (2017). Kefir. In J. Frias, C. Martinez-Villaluenga, & E. Penas (Eds.), Fermented foods in health and disease prevention (pp. 339–361). London: Academic Press Ltd/Elsevier Science Ltd.CrossRefGoogle Scholar
  46. Keszei, A. P., Schouten, L. J., Goldbohm, R. A., & van den Brandt, P. A. (2010). Dairy intake and the risk of bladder cancer in the Netherlands Cohort Study on Diet and Cancer. American Journal of Epidemiology, 171(4), 436–446.PubMedCrossRefGoogle Scholar
  47. Kolmeder, C. A., Salojarvi, J., Ritari, J., de Been, M., Raes, J., Falony, G., Vieira-Silva, S., Kekkonen, R. A., Corthals, G. L., Palva, A., Salonen, A., & de Vos, W. M. (2016). Faecal metaproteomic analysis reveals a personalized and stable functional microbiome and limited effects of a probiotic intervention in adults. PLoS One, 11(4), e0153294.PubMedPubMedCentralCrossRefGoogle Scholar
  48. Korhonen, H., & Pihlanto, A. (2006). Bioactive peptides: Production and functionality. International Dairy Journal, 16(9), 945–960.CrossRefGoogle Scholar
  49. Ladero, V., & Sanchez, B. (2017). Molecular and technological insights into the aerotolerance of anaerobic probiotics: Examples from bifidobacteria. Current Opinion in Food Science, 14, 110–115.CrossRefGoogle Scholar
  50. LeBlanc, J. G., Chain, F., Martin, R., Bermudez-Humaran, L. G., Courau, S., & Langella, P. (2017). Beneficial effects on host energy metabolism of short-chain fatty acids and vitamins produced by commensal and probiotic bacteria. Microbial Cell Factories, 16(1), 79.PubMedPubMedCentralCrossRefGoogle Scholar
  51. Lister, J. (1873). Further contribution to the natural history of bacteria and the germ theory of fermentative changes. The Quarterly Journal of Microscopical Science, 13, 380–408.Google Scholar
  52. López-Expósito, I., Miralles, B., Amigo, L., & Hernandez-Ledesma, B. (2017). Health effects of cheese components with a focus on bioactive peptides. In J. Frias, C. Martinez-Villaluenga, & E. Penas (Eds.), Fermented foods in health and disease prevention (pp. 239–273). London: Academic Press Ltd/Elsevier Science Ltd.CrossRefGoogle Scholar
  53. Macori, G., & Cotter, P. D. (2018). Novel insights into the microbiology of fermented dairy foods. Current Opinion in Biotechnology, 49, 172–178.PubMedCrossRefGoogle Scholar
  54. Marciniak, A. (2011). The secondary products revolution: Empirical evidence and its current zooarchaeological critique. Journal of World Prehistory, 24(2–3), 117–130.CrossRefGoogle Scholar
  55. Marco, M. L., Heeney, D., Binda, S., Cifelli, C. J., Cotter, P. D., Foligne, B., Ganzle, M., Kort, R., Pasin, G., Pihlanto, A., Smid, E. J., & Hutkins, R. (2017). Health benefits of fermented foods: Microbiota and beyond. Current Opinion in Biotechnology, 44, 94–102.PubMedCrossRefGoogle Scholar
  56. Markowiak, P., & Slizewska, K. (2017). Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients, 9(9), 1021.PubMedCentralCrossRefPubMedGoogle Scholar
  57. Martinez-Villaluenga, C., Penas, E., & Frias, J. (2017). Bioactive peptides in fermented foods: Production and evidence for health effects. In J. Frias, C. Martinez-Villaluenga, & E. Penas (Eds.), Fermented foods in health and disease prevention (pp. 23–47). London: Academic Press Ltd/Elsevier Science Ltd.CrossRefGoogle Scholar
  58. Mater, D. D., Bretigny, L., Firmesse, O., Flores, M. J., Mogenet, A., Bresson, J. L., & Corthier, G. (2005). Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus survive gastrointestinal transit of healthy volunteers consuming yogurt. FEMS Microbiology Letters, 250(2), 185–187.PubMedCrossRefGoogle Scholar
  59. Metchnikoff, E. (1908). The prolongation of life. Optimistic studies. New York: G. P. Putnam’s Sons/The Knickerbocker Press.Google Scholar
  60. Meyer, A. L., Elmadfa, I., Herbacek, I., & Micksche, M. (2007). Probiotic, as well as conventional yogurt, can enhance the stimulated production of proinflammatory cytokines. Journal of Human Nutrition and Dietetics, 20(6), 590–598.PubMedCrossRefGoogle Scholar
  61. Misselwitz, B., Pohl, D., Fruhauf, H., Fried, M., Vavricka, S. R., & Fox, M. (2013). Lactose malabsorption and intolerance: Pathogenesis, diagnosis and treatment. United European Gastroenterology Journal, 1(3), 151–159.PubMedPubMedCentralCrossRefGoogle Scholar
  62. Montel, M. C., Buchin, S., Mallet, A., Delbes-Paus, C., Vuitton, D. A., Desmasures, N., & Berthier, F. (2014). Traditional cheeses: Rich and diverse microbiota with associated benefits. International Journal of Food Microbiology, 177, 136–154.PubMedCrossRefGoogle Scholar
  63. Moslehi-Jenabian, S., Pedersen, L. L., & Jespersen, L. (2010). Beneficial effects of probiotic and food borne yeasts on human health. Nutrients, 2(4), 449–473.PubMedPubMedCentralCrossRefGoogle Scholar
  64. Nagpal, R., Behare, P., Rana, R., Kumar, A., Kumar, M., Arora, S., Morotta, F., Jain, S., & Yadav, H. (2011). Bioactive peptides derived from milk proteins and their health beneficial potentials: An update. Food & Function, 2(1), 18–27.CrossRefGoogle Scholar
  65. Nampoothiri, K. M., Beena, D. J., Vasanthakumari, D. S., & Ismail, B. (2017). Health benefits of exopolysaccharides in fermented foods. In J. Frias, C. Martinez-Villaluenga, & E. Penas (Eds.), Fermented foods in health and disease prevention (pp. 49–62). London: Academic Press Ltd/Elsevier Science Ltd.CrossRefGoogle Scholar
  66. Nash, M. J., Frank, D. N., & Friedman, J. E. (2017). Early microbes modify immune system development and metabolic homeostasis—The “Restaurant” hypothesis revisited. Frontiers in Endocrinology, 8, 349.PubMedPubMedCentralCrossRefGoogle Scholar
  67. Olivares, M., Diaz-Ropero, P., Gomez, N., Sierra, S., Lara-Villoslada, F., Martin, R., Rodriguez, J. M., & Xaus, J. (2006). Dietary deprivation of fermented foods causes a fall in innate immune response. Lactic acid bacteria can counteract the immunological effect of this deprivation. Journal of Dairy Research, 73(4), 492–498.PubMedCrossRefGoogle Scholar
  68. Ong, L., Henriksson, A., & Shah, N. P. (2007). Angiotensin converting enzyme-inhibitory activity in Cheddar cheeses made with the addition of probiotic Lactobacillus casei sp. Le Lait, 87(2), 149–165.CrossRefGoogle Scholar
  69. Orla O’Sullivan, P. D. C. (2017). Microbiota of raw milk and raw milk cheeses. In P. L. H. McSweeney, P. F. Fox, P. D. Cotter, & D. W. W. Everett (Eds.), Cheese: Chemistry, physics and microbiology (pp. 301–316). London: Elsevier Academic Press.CrossRefGoogle Scholar
  70. Pala, V., Sieri, S., Berrino, F., Vineis, P., Sacerdote, C., Palli, D., Masala, G., Panico, S., Mattiello, A., Tumino, R., Giurdanella, M. C., Agnoli, C., Grioni, S., & Krogh, V. (2011). Yogurt consumption and risk of colorectal cancer in the Italian European prospective investigation into cancer and nutrition cohort. International Journal of Cancer, 129(11), 2712–2719.PubMedCrossRefGoogle Scholar
  71. Pelaez, C., & Requena, T. (2005). Exploiting the potential of bacteria in the cheese ecosystem. International Dairy Journal, 15(6–9), 831–844.CrossRefGoogle Scholar
  72. Perdigón, G., de Moreno de LeBlanc, A., Valdez, J., & Rachid, M. (2002). Role of yoghurt in the prevention of colon cancer. European Journal of Clinical Nutrition, 56(Suppl 3), S65–S68.PubMedCrossRefGoogle Scholar
  73. Prakash Tamang, J., & Kailasapathy, K. (2010). Fermented foods and beverages of the world. Boca Raton: CRC Press.CrossRefGoogle Scholar
  74. Quilez, J., & Diana, M. (2017). Gamma-aminobutyric acid-enriched fermented foods. In J. Frias, C. Martinez-Villaluenga, & E. Penas (Eds.), Fermented foods in health and disease prevention (pp. 85–103). London: Academic Press Ltd/Elsevier Science Ltd.CrossRefGoogle Scholar
  75. Rizkalla, S. W., Luo, J., Kabir, M., Chevalier, A., Pacher, N., & Slama, G. (2000). Chronic consumption of fresh but not heated yogurt improves breath-hydrogen status and short-chain fatty acid profiles: A controlled study in healthy men with or without lactose maldigestion. American Journal of Clinical Nutrition, 72(6), 1474–1479.PubMedCrossRefGoogle Scholar
  76. Rojas-Ronquillo, R., Cruz-Guerrero, A., Flores-Najera, A., Rodriguez-Serrano, G., Gomez-Ruiz, L., Reyes-Grajeda, J. P., Jimenez-Guzman, J., & Garcia-Garibay, M. (2012). Antithrombotic and angiotensin-converting enzyme inhibitory properties of peptides released from bovine casein by Lactobacillus casei Shirota. International Dairy Journal, 26(2), 147–154.CrossRefGoogle Scholar
  77. Ross, R. P., Fitzgerald, G., Collins, K., & Stanton, C. (2002). Cheese delivering biocultures—Probiotic cheese. Australian Journal of Dairy Technology, 57(2), 71–78.Google Scholar
  78. Ryan, P. M., Ross, R. P., Fitzgerald, G. F., Caplice, N. M., & Stanton, C. (2015). Sugar-coated: Exopolysaccharide producing lactic acid bacteria for food and human health applications. Food & Function, 6(3), 679–693.CrossRefGoogle Scholar
  79. Saito, T., Nakamura, T., Kitazawa, H., Kawai, Y., & Itoh, T. (2000). Isolation and structural analysis of antihypertensive peptides that exist naturally in Gouda cheese. Journal of Dairy Science, 83(7), 1434–1440.PubMedCrossRefGoogle Scholar
  80. Salazar, N., Gueimonde, M., de los Reyes-Gavilan, C. G., & Ruas-Madiedo, P. (2016). Exopolysaccharides produced by lactic acid bacteria and bifidobacteria as fermentable substrates by the intestinal microbiota. Critical Reviews in Food Science and Nutrition, 56(9), 1440–1453.PubMedCrossRefGoogle Scholar
  81. Santiago, S., Sayon-Orea, C., Babio, N., Ruiz-Canela, M., Marti, A., Corella, D., Estruch, R., Fito, M., Aros, F., Ros, E., Gomez-Garcia, E., Fiol, M., Lapetra, J., Serra-Majem, L., Becerra-Tomas, N., Salas-Salvado, J., Pinto, X., Schroder, H., & Martinez, J. A. (2016). Yogurt consumption and abdominal obesity reversion in the PREDIMED study. Nutrition, Metabolism, and Cardiovascular Diseases, 26(6), 468–475.PubMedCrossRefGoogle Scholar
  82. Saubade, F., Hemery, Y. M., Guyot, J.-P., & Humblot, C. (2017). Lactic acid fermentation as a tool for increasing the folate content of foods. Critical Reviews in Food Science and Nutrition, 57(18), 3894–3910.PubMedCrossRefGoogle Scholar
  83. Savaiano, D. A. (2014). Lactose digestion from yogurt: Mechanism and relevance. The American Journal of Clinical Nutrition, 99(5 Suppl), 1251S–1255S.PubMedCrossRefGoogle Scholar
  84. Sayon-Orea, C., Martinez-Gonzalez, M. A., Ruiz-Canela, M., & Bes-Rastrollo, M. (2017). Associations between yogurt consumption and weight gain and risk of obesity and metabolic syndrome: A systematic review. Advances in Nutrition, 8(1), 146S–154S.PubMedPubMedCentralCrossRefGoogle Scholar
  85. Schleifer, K. H., Kraus, J., Dvorak, C., Kilpperbalz, R., Collins, M. D., & Fischer, W. (1985). Transfer of Streptococcus lactis and related streptococci to the genus Lactococcus gen. nov. Systematic and Applied Microbiology, 6(2), 183–195.CrossRefGoogle Scholar
  86. Schmidt, T. S. B., Raes, J., & Bork, P. (2018). The human gut microbiome: From association to modulation. Cell, 172(6), 1198–1215.PubMedCrossRefGoogle Scholar
  87. Seppo, L., Jauhiainen, T., Poussa, T., & Korpela, R. (2003). A fermented milk high in bioactive peptides has a blood pressure-lowering effect in hypertensive subjects. American Journal of Clinical Nutrition, 77(2), 326–330.PubMedCrossRefGoogle Scholar
  88. Settanni, L., & Moschetti, G. (2010). Non-starter lactic acid bacteria used to improve cheese quality and provide health benefits. Food Microbiology, 27(6), 691–697.PubMedCrossRefGoogle Scholar
  89. Silanikove, N., Leitner, G., & Merin, U. (2015). The interrelationships between lactose intolerance and the modern dairy industry: Global perspectives in evolutional and historical backgrounds. Nutrients, 7(9), 7312–7331.PubMedPubMedCentralCrossRefGoogle Scholar
  90. Sipola, M., Finckenberg, P., Korpela, R., Vapaatalo, H., & Nurminen, M. L. (2002). Effect of long-term intake of milk products on blood pressure in hypertensive rats. Journal of Dairy Research, 69(1), 103–111.PubMedCrossRefGoogle Scholar
  91. Smid, E. J., Erkus, O., Spus, M., Wolkers-Rooijackers, J. C., Alexeeva, S., & Kleerebezem, M. (2014). Functional implications of the microbial community structure of undefined mesophilic starter cultures. Microbial Cell Factories, 13(Suppl 1), S2.PubMedPubMedCentralCrossRefGoogle Scholar
  92. Sommer, F., & Backhed, F. (2016). Know your neighbor: Microbiota and host epithelial cells interact locally to control intestinal function and physiology. BioEssays, 38(5), 455–464.PubMedCrossRefGoogle Scholar
  93. Sonestedt, E., Wirfalt, E., Wallstrom, P., Gullberg, B., Orho-Melander, M., & Hedblad, B. (2011). Dairy products and its association with incidence of cardiovascular disease: The Malmo diet and cancer cohort. European Journal of Epidemiology, 26(8), 609–618.PubMedCrossRefGoogle Scholar
  94. Stanton, C., Ross, R. P., Fitzgerald, G. F., & Van Sinderen, D. (2005). Fermented functional foods based on probiotics and their biogenic metabolites. Current Opinion in Biotechnology, 16(2), 198–203.PubMedCrossRefGoogle Scholar
  95. St-Onge, M. P., Farnworth, E. R., & Jones, P. J. (2000). Consumption of fermented and nonfermented dairy products: Effects on cholesterol concentrations and metabolism. The American Journal of Clinical Nutrition, 71(3), 674–681.PubMedCrossRefGoogle Scholar
  96. Thierry, A., Deutsch, S. M., Falentin, H., Dalmasso, M., Cousin, F. J., & Jan, G. (2011). New insights into physiology and metabolism of Propionibacterium freudenreichii. International Journal of Food Microbiology, 149(1), 19–27.PubMedCrossRefGoogle Scholar
  97. Tripathi, M. K., & Giri, S. K. (2014). Probiotic functional foods: Survival of probiotics during processing and storage. Journal of Functional Foods, 9, 225–241.CrossRefGoogle Scholar
  98. Tunick, M. H., & Van Hekken, D. L. (2015). Dairy products and health: Recent insights. Journal of Agricultural and Food Chemistry, 63(43), 9381–9388.PubMedCrossRefGoogle Scholar
  99. Unno, T., Choi, J. H., Hur, H. G., Sadowsky, M. J., Ahn, Y. T., Huh, C. S., Kim, G. B., & Cha, C. J. (2015). Changes in human gut microbiota influenced by probiotic fermented milk ingestion. Journal of Dairy Science, 98(6), 3568–3576.PubMedCrossRefGoogle Scholar
  100. Urista, C. M., Fernandez, R. A., Rodriguez, F. R., Cuenca, A. A., & Jurado, A. T. (2011). Review: Production and functionality of active peptides from milk. Food Science and Technology International, 17(4), 293–317.CrossRefGoogle Scholar
  101. USDA. (2010). Dietary guidelines for Americans. Washington, DC: U.S. Government Printing Office.Google Scholar
  102. Ventura, M., O’Flaherty, S., Claesson, M. J., Turroni, F., Klaenhammer, T. R., van Sinderen, D., & O’Toole, P. W. (2009). Genome-scale analyses of health-promoting bacteria: Probiogenomics. Nature Reviews. Microbiology, 7(1), 61–71.PubMedCrossRefGoogle Scholar
  103. Van der Meer, R., Bovee-Oudenhoven, I. M. J. (1998). Dietary modulation of intestinal bacterial infections. International Dairy Journal, 8(5-6), 481–486.CrossRefGoogle Scholar
  104. Wang, H., Livingston, K. A., Fox, C. S., Meigs, J. B., & Jacques, P. F. (2013). Yogurt consumption is associated with better diet quality and metabolic profile in American men and women. Nutrition Research, 33(1), 18–26.PubMedCrossRefGoogle Scholar
  105. Watanabe, M., Maemura, K., Kanbara, K., Tamayama, T., & Hayasaki, H. (2002). GABA and GABA receptors in the central nervous system and other organs. International Review of Cytology, 213, 1–47.PubMedCrossRefGoogle Scholar
  106. Weimer, B. (2007). Improving the flavour of cheese. Boca Raton: Woodhead Publishing/CRC Press.CrossRefGoogle Scholar
  107. Wouters, J. T. M., Ayad, E. H. E., Hugenholtz, J., & Smit, G. (2002). Microbes from raw milk for fermented dairy products. International Dairy Journal, 12(2–3), 91–109.CrossRefGoogle Scholar
  108. Wu, Q. L., & Shah, N. P. (2017). High gamma-aminobutyric acid production from lactic acid bacteria: Emphasis on Lactobacillus brevis as a functional dairy starter. Critical Reviews in Food Science and Nutrition, 57(17), 3661–3672.PubMedCrossRefGoogle Scholar
  109. Zhang, C., Derrien, M., Levenez, F., Brazeilles, R., Ballal, S. A., Kim, J., Degivry, M. C., Quere, G., Garault, P., van Hylckama Vlieg, J. E., Garrett, W. S., Dore, J., & Veiga, P. (2016). Ecological robustness of the gut microbiota in response to ingestion of transient food-borne microbes. The ISME Journal, 10(9), 2235–2245.PubMedPubMedCentralCrossRefGoogle Scholar
  110. Zheng, H., Yde, C. C., Clausen, M. R., Kristensen, M., Lorenzen, J., Astrup, A., & Bertram, H. C. (2015). Metabolomics investigation to shed light on cheese as a possible piece in the French paradox puzzle. Journal of Agricultural and Food Chemistry, 63(10), 2830–2839.PubMedCrossRefGoogle Scholar
  111. Zhong, L., Zhang, X., & Covasa, M. (2014). Emerging roles of lactic acid bacteria in protection against colorectal cancer. World Journal of Gastroenterology, 20(24), 7878–7886.PubMedPubMedCentralCrossRefGoogle Scholar
  112. Zhu, Y., Wang, H., Hollis, J. H., & Jacques, P. F. (2015). The associations between yogurt consumption, diet quality, and metabolic profiles in children in the USA. European Journal of Nutrition, 54(4), 543–550.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • C. Peláez
    • 1
  • M. C. Martínez-Cuesta
    • 1
  • T. Requena
    • 1
    Email author
  1. 1.Department of Food Biotechnology and MicrobiologyInstitute of Food Science Research, CIAL (CSIC)MadridSpain

Personalised recommendations