On the Application of Ontological Patterns for Conceptual Modeling in Multidimensional Models

  • Glenda AmaralEmail author
  • Giancarlo Guizzardi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11695)


Data warehouses (DW) play a decisive role in providing analytical information for decision making. Multidimensional modeling is a special approach to modeling data, considered the foundation for building data warehouses. With the explosive growth in the amount of heterogeneous data (most of which external to the organization) in the latest years, the DW has been impacted by the need to interoperate and deal with the complexity of this new type of information, such as big data, data lakes and cognitive computing platforms, becoming evident the need to improve the semantic expressiveness of the DW. Research has shown that ontological theories can play a fundamental role in improving the quality of conceptual models, reinforcing their potential to support semantic interoperability in its various manifestations. In this paper we propose the application of ontological patterns, grounded in the Unified Foundational Ontology (UFO), for conceptual modeling in multidimensional models, in order to improve the semantic expressiveness of the models used to represent analytical data in a DW.


Multidimensional modeling Data warehouse Conceptual modeling Ontological patterns 



CAPES (PhD grant# 88881.173022/2018-01) and OCEAN project (UNIBZ).


  1. 1.
    Abelló, A., Samos, J., Saltor, F.: YAM\(^{2}\): a multidimensional conceptual model extending UML. Inf. Syst. 31(6), 541–567 (2006)CrossRefGoogle Scholar
  2. 2.
    de Almeida Falbo, R., Guizzardi, G., Gangemi, A., Presutti, V.: Ontology patterns: clarifying concepts and terminology. In: WOP (2013)Google Scholar
  3. 3.
    Carvalho, V.A., Almeida, J.P.A., Guizzardi, G.: Using a well-founded multi-level theory to support the analysis and representation of the powertype pattern in conceptual modeling. In: CAISE (2016)Google Scholar
  4. 4.
    Dahchour, M., Pirotte, A.: The semantics of reifying N-ary relationships as classes. In: ICEIS (2002)Google Scholar
  5. 5.
    Davidson, D.: The individuation of events. In: Rescher, N. (ed.) Essays in Honor of Carl G. Hempel, vol. 24, pp. 216–234. Springer, Dordrecht (1969)CrossRefGoogle Scholar
  6. 6.
    Franconi, E., Kamblet, A.: A data warehouse conceptual data model. In: SSDBM (2004)Google Scholar
  7. 7.
    Galton, A.: Reified temporal theories and how to unreify them. In: IJCAI, pp. 1177–1183. Citeseer (1991)Google Scholar
  8. 8.
    Golfarelli, M., Maio, D., Rizzi, S.: The dimensional fact model: a conceptual model for data warehouses. Int. J. Coop. Inf. Syst. 7(02n03), 215–247 (1998)CrossRefGoogle Scholar
  9. 9.
    Guarino, N., Guizzardi, G.: Relationships and events: towards a general theory of reification and truthmaking. In: AI*IA (2016)Google Scholar
  10. 10.
    Guarino, N., Sales, T.P., Guizzardi, G.: Reification and truthmaking patterns. In: ER (2018)Google Scholar
  11. 11.
    Guizzardi, G.: Ontological Foundations for Structural Conceptual Models. CTIT, Centre for Telematics and Information Technology, Trento (2005)zbMATHGoogle Scholar
  12. 12.
    Guizzardi, G.: Ontological foundations for conceptual part-whole relations: the case of collectives and their parts. In: CAiSE (2011)Google Scholar
  13. 13.
    Guizzardi, G., Halpin, T.: Ontological foundations for conceptual modelling. Appl. Ontol. 3(1–2), 1–12 (2008)Google Scholar
  14. 14.
    Guizzardi, G., Wagner, G., Almeida, J.P.A., Guizzardi, R.S.S.: Towards ontological foundations for conceptual modeling: the unified foundational ontology (UFO) story. Appl. Ontol. 10(3–4), 259–271 (2015)CrossRefGoogle Scholar
  15. 15.
    Guizzardi, G., et al.: Towards ontological foundations for the conceptual modeling of events. In: ER (2013)CrossRefGoogle Scholar
  16. 16.
    He, L., Chen, Y., Meng, N., Liu, L.Y.: An ontology-based conceptual modeling method for data warehouse. In: ICM (2011)Google Scholar
  17. 17.
    Hüsemann, B., Lechtenbörger, J., Vossen, G.: Conceptual Data Warehouse Design. Universität Münster, Angewandte Mathematik und Informatik (2000)Google Scholar
  18. 18.
    Khouri, S., Ladjel, B.: A methodology and tool for conceptual designing a data warehouse from ontology-based sources. In: Proceedings of the ACM 13th International Workshop on Data Warehousing and OLAP, pp. 19–24. ACM (2010)Google Scholar
  19. 19.
    Kimball, R., Ross, M.: The Data Warehouse Toolkit: The Complete Guide to Dimensional Modeling. Wiley, Hawaii (2011)Google Scholar
  20. 20.
    Kimball, R., Ross, M., Thornthwaite, W., Mundy, J., Becker, B.: The Data Warehouse Lifecycle Toolkit. Wiley, Hawaii (2008)Google Scholar
  21. 21.
    Luján-Mora, S., Trujillo, J., Song, I.Y.: A UML profile for multidimensional modeling in data warehouses. Data Knowl. Eng. 59(3), 725–769 (2006)CrossRefGoogle Scholar
  22. 22.
    MacBride, F.: Truthmakers. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy. Stanford University, Metaphysics Research Lab (2019)Google Scholar
  23. 23.
    Mylopoulos, J.: Conceptual modeling and telos. In: ER (1992)Google Scholar
  24. 24.
    Olivé, A.: Relationship reification: a temporal view. In: CAiSE (1999)Google Scholar
  25. 25.
    Pardillo, J., Mazón, J.N.: Using ontologies for the design of data warehouses. arXiv preprint. arXiv:1106.0304 (2011)
  26. 26.
    Pedersen, T.B.: Multidimensional modeling. In: Liu, L., Özsu, M.T. (eds.) Encyclopedia of Database Systems, pp. 1777–1784. Springer, Boston (2009)Google Scholar
  27. 27.
    Romero, O., Abelló, A.: Automating multidimensional design from ontologies. In: Proceedings of the ACM Tenth International Workshop on Data Warehousing and OLAP, pp. 1–8. ACM (2007)Google Scholar
  28. 28.
    Romero, O., Abelló, A.: A framework for multidimensional design of data warehouses from ontologies. Data Knowl. Eng. 69(11), 1138–1157 (2010)CrossRefGoogle Scholar
  29. 29.
    Ruy, F.B., Guizzardi, G., Falbo, R.A., Reginato, C.C., Santos, V.A.: From reference ontologies to ontology patterns and back. Data Knowl. Eng. 109, 41–69 (2017)CrossRefGoogle Scholar
  30. 30.
    Sapia, C., Blaschka, M., Höfling, G., Dinter, B.: Extending the E/R model for the multidimensional paradigm. In: ER (1998)Google Scholar
  31. 31.
    Selma, K., Ilyès, B., Ladjel, B., Eric, S., Stéphane, J., Michael, B.: Ontology-based structured web data warehouses for sustainable interoperability: requirement modeling, design methodology and tool. Comput. Ind. 63(8), 799–812 (2012)CrossRefGoogle Scholar
  32. 32.
    Thenmozhi, M., Vivekanandan, K.: A tool for data warehouse multidimensional schema design using ontology. Int. J. Comput. Sci. Issues (IJCSI) 10(2), 161 (2013)Google Scholar
  33. 33.
    Verdonck, M., Gailly, F.: Insights on the use and application of ontology and conceptual modeling languages in ontology-driven conceptual modeling. In: ER (2016)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Free University of Bozen-BolzanoBolzanoItaly

Personalised recommendations