Advertisement

Measurement Report and Presentation

  • Leslie Pendrill
Chapter
Part of the Springer Series in Measurement Science and Technology book series (SSMST)

Abstract

Any report and presentation of measurement results will include both the measured value and some estimate of the measurement uncertainty in the measured value. In this penultimate chapter, and prior to the final step of decision-making covered in Chap.  6, we consider how best to model measurement information throughout the measurement process—from entity stimulus, through instrument response to restitution of the measurement value. A general and broad formulation is sought of differences applicable in both the physical and social sciences.

Rossi (Measurement and probability – A probabilistic theory of measurement with applications, in Springer Series in Measurement Science and Technology, 2014) in another book in this series gives an account of a probabilistic theory of measurement. In this chapter, we build on Rossi’s approach when presenting measurement for both the physical and social sciences; extending the probabilistic theory for treating measurement error and uncertainty by using concepts of entropy and symmetry.

The concept of entropy can in fact be invoked analogously to describe ‘dissipation of useful information’—to paraphrase Carnot—at each of the three main stages in the measurement process—from (A) object, through (B) measurement to (C) response—not only to make a descriptive presentation (as in probability theory of measurement) but also in an explanatory and predictive way.

The entropy concept can also help when presenting measurement results at every level in the quantity calculus hierarchy (Table  3.1) from mere labels for nominal syntax, through semantic and pragmatic measures, to a full expression in terms of the nature of the quantity measured and effectiveness in changing conduct. This approach is particularly useful for prioritising (Sect. 5.2.1) among a plethora of potentially important factors (such as identified in a critical incidence process). This discussion will also prepare the ground for the final chapter of book, when decisions about product (in the widest sense) based on measurement need to be made.

Keywords

Measurement information Measurement system Stimulus Observation Response Retribution Entropy Quantity calculus Prioritisation of construct and explanatory variables 

References

  1. Y Akao, G H Mazur, The leading edge in QFD: past, present and future, Int. J. Quality & Reliability Management 20, 20–35 (2003)Google Scholar
  2. A. Agresti, Categorical Data Analysis, 3rd edn. (Wiley, Hoboken, 2013). ISBN 978-0-470-46363-5zbMATHGoogle Scholar
  3. D. Andrich, Rasch Models for Measurement (Sage Publications, Beverly Hills, 1988)CrossRefGoogle Scholar
  4. D. Andrich, A law of ordinal random error: The Rasch measurement model and random error distributions of ordinal assessments. J. Phys. Conf. Series 1044, 012055 (2017).  https://doi.org/10.1088/1742-6596/1044/1/012055. J. of Phys. Conference Series IMEKO 2017, IOP Conf. Series.CrossRefGoogle Scholar
  5. F. Attneave, Informational aspects of visual perception. Psychol. Rev. 61, 183–193 (1954)CrossRefGoogle Scholar
  6. H. Barlow, The exploitation of regularities in the environment by the brain. Behav. Brain Sci. 24, 602–607 (2001)CrossRefGoogle Scholar
  7. E. Bashkansky, S. Dror, Matrix approach to analysis of human errors and their prevention by quality engineering and managerial tools. Qual. Reliab. Eng. Int. 32(2), 535–545 (2015).  https://doi.org/10.1002/qre.1770CrossRefGoogle Scholar
  8. E. Bashkansky, T. Gadrich, Some metrological aspects of ordinal measurements. Accredit. Qual. Assur. 15, 331–336 (2010).  https://doi.org/10.1007/s00769-009-0620-xCrossRefGoogle Scholar
  9. M.J. Bitner, B.H. Booms, M. Stanfield Trereault, The service encounter: diagnosing favorable and unfavorable incidents. J. Mark. 54, 71–84 (1990)CrossRefGoogle Scholar
  10. J.P. Bentley (2005) Principles of Measurement Systems, Pearson Education Limited www.pearsoned.co.uk 4th edition ISBN 0 130 43028 5Google Scholar
  11. M. Boers, J.R. Kirwan, P. Tugwell, et al., The OMERACT Handbook (OMERACT, Ottawa, 2018). https://omeract.org/resourcesGoogle Scholar
  12. L. Brillouin, Science and information theory, in Physics Today, vol. 15, 2nd edn., (Academic Press, Cambridge, 1962).  https://doi.org/10.1063/1.3057866CrossRefGoogle Scholar
  13. L. Carnot, Principes Fondamentaux de l’Équilibre et du Movement [Fundamental Principles of Equilibrium and Movement], Paris (1803)Google Scholar
  14. L K. Chan, M.L. Wu, Quality function deployment: a literature review, Eur. J. Operational Research 143, 463–97 (2002), https://doi.org/10.1080/00207540600575779Google Scholar
  15. L. Chen, X. Liang, T. Li, Collaborative performance research on multi-level hospital management based on synergy entropy-HoQ. Entropy 17, 2409–2431 (2015).  https://doi.org/10.3390/e1704240ADSCrossRefGoogle Scholar
  16. B. Christe, E. Cooney, R. Rogers, Analysis of the impact of a radiofrequency identification asset-tracking system in the healthcare setting. J. Clin. Eng. 35, 49–55 (2010)CrossRefGoogle Scholar
  17. K.B. Christensen, M. Olsberg, Marginal maximum likelihood estimation in polytomous Rasch models using SAS, in Annales de l’ISUP (2013), https://www.researchgate.net/publication/258396258_Conditional_Maximum_Likelihood_Estimation_in_Polytomous_Rasch_Models_Using_SAS. Accessed 31 Aug 2018
  18. L. J. Cronbach, R. Nageswari, and G.C. Gleser (1963). Theory of generalizability: A liberation of reliability theory. The British Journal of Statistical Psychology, 16, 137–163Google Scholar
  19. J. Dagman, R. Emardson, S. Kanerva, L.R. Pendrill, A. Farbrot, S. Abbas, A. Nihlstrand, Measuring comfort for heavily-incontinent patients assisted by Absorbent products in several contexts, in Incontinence in The Engineering Challenge IX, IMECHE, London, 5–6 November 2013 (2013)Google Scholar
  20. W.R. Dardick, Reweighting Data in the Spirit of Tukey: Using Bayesian Posterior Probabilities as Rasch Residuals for Studying Misfit, Dissertation, University of Maryland (2010)Google Scholar
  21. W.R. Dardick, R.J. Mislevy, Reweighting data in the spirit of Tukey. Educ. Psychol. Meas. 76, 88–113 (2016).  https://doi.org/10.1177/0013164415583351CrossRefGoogle Scholar
  22. J.G. Dolan, Shared decision-making – Transferring research into practice: the analytic hierarchy process (AHP). Patient Educ. Couns. 73, 418–425 (2008).  https://doi.org/10.1016/j.pec.2008.07.032CrossRefGoogle Scholar
  23. N. Dorans, T. Moses, D. Eignor, Principles and Practices of Test Score Equating (Educational Testing Service, Princeton, 2010). ETS RR-10-29.CrossRefGoogle Scholar
  24. G.H. Fischer, The linear logistic test model as an instrument in educational research. Acta Psychol. 37, 359–374 (1973). https://www.sciencedirect.com/science/article/pii/0001691873900036CrossRefGoogle Scholar
  25. W. P. Fisher Jr. (2015) Rasch measurement as a basis for metrologically traceable standards Rasch Meas. Trans. 28 1492–3Google Scholar
  26. J.A. Fisher, T. Monahan, Evaluation of real-time location systems in their hospital contexts. Int. J. Med. Inform. 81, 705–712 (2012)CrossRefGoogle Scholar
  27. R. Fleischmann, Einheiteninvariante Gröβengleichungen, Dimension. Der Mathematische und Naturwissenschaftliche Unterricht 12, 386–399 (1960)Google Scholar
  28. T. Gadrich, E Bashkansky, Ricardas Zitikis (2014), Assessing variation: a unifying approach for all scales of measurement, Qual. Quant., http://dx.doi.org/10.1007/s11135-014-0040-9Google Scholar
  29. H. Goldstein, Francis Galton, measurement, psychometrics and social progress. Assess. Educ. Princ Policy Pract. 19(2), 147–158 (2012). www.bristol.ac.uk/cmm/team/hg/full-publications/2012/Galton.pdfGoogle Scholar
  30. D.D. Gremler, The critical incident technique in service research. J. Serv. Res. 7, 65–89 (2004)CrossRefGoogle Scholar
  31. L. Guttman, What is not what in statistics. Stat. 26, 81–107 (1977)Google Scholar
  32. Y. Heerkens, J. Engels, C. Kuiper, J. Van Der Gulden, R. Oostendorp, The use of the ICF to describe work related factors influencing the health of employees. Disabil. Rehabil. 26, 1060–1066 (2004).  https://doi.org/10.1080/09638280410001703530CrossRefGoogle Scholar
  33. J.C. Helton, Uncertainty and sensitivity analysis in the presence of stochastic and subjective uncertainty. J. Stat. Comput. Simul. 57, 3–76 (1997)CrossRefADSzbMATHGoogle Scholar
  34. J.C. Helton et al., Survey of sampling-based methods for uncertainty and sensitivity analysis. Reliab. Eng. Syst. Saf. 91, 1175–1209 (2006)CrossRefGoogle Scholar
  35. M.C.E. Hermans, J.G.J. Hoeijmakers, C.G. Faber, I.S.J. Merkies, Reconstructing the Rasch-built Myotonic dystrophy type 1 activity and participation scale. PLoS One 10(10), e0139944 (2015).  https://doi.org/10.1371/journal.pone.0139944CrossRefGoogle Scholar
  36. H. Hoijtink, A. Boomsma, Statistical inferences based on latent ability estimates. Psychometrika 61, 313–330 (1996)CrossRefzbMATHGoogle Scholar
  37. S.M. Humphry, The role of the unit in physics and psychometrics. Measurement 9, 1–24 (2011)Google Scholar
  38. JCGM 100:2008 Evaluation of measurement data – Guide to the expression of uncertainty in measurement (GUM 1995 with minor corrections) in Joint Committee on Guides in Metrology (JCGM)(2008)Google Scholar
  39. P. Jeter, C. Rozanski, R. Massof, O. Adeyemo, G. Dagnelie, the PLOVR Study Group, Development of the ultra-low vision functioning questionnaire (ULV-VFQ). Transl. Vis. Sci. Technol. 6(3), 11 (2017).  https://doi.org/10.1167/tvst.6.3.11CrossRefGoogle Scholar
  40. W. Kintsch, The Representation of Meaning in Memory (Lawrence Erlbaum Associates, Hillsdale, 1974)Google Scholar
  41. G.J. Klir, T.A. Folger, Fuzzy Sets, Uncertainty and Information (Prentice Hall, Upper Saddle River, 1988). ISBN 0-13-345984-5zbMATHGoogle Scholar
  42. H. Knox, A scale, based on the work at Ellis Island, for estimating mental defect. J. Am. Med. Assoc. LXII(10), 741–747 (1914)CrossRefGoogle Scholar
  43. S. Kullback, R.A. Leibler, On information and sufficiency. Ann. Math. Statist. 22, 79–86 (1951).  https://doi.org/10.1214/aoms/1177729694MathSciNetCrossRefzbMATHGoogle Scholar
  44. S.L. Latimer, Using the linear logistic test model to investigate a discourse-based model of Reading comprehension. Educ. Res. Perspect. 9(1), 73–94 (1982). https://www.rasch.org/erp6.htmGoogle Scholar
  45. J.M. Linacre, The Rasch model cannot be “disproved”! Rasch Meas. Trans. 10(3), 512–514 (1996)Google Scholar
  46. J.M. Linacre, Optimizing rating scale category effectiveness. J. Appl. Meas. 3(1), 85–106 (2002)Google Scholar
  47. J.M. Linacre, “Estimation methods for Rasch measures”, Chapter 2, in Introduction to Rasch Measurement, ed. by E.V. Smith, R.M. Smith (JAM Press, Maple Grove, 2004a)Google Scholar
  48. J.M. Linacre, “Rasch model estimation: further topics”, Chapter 24, in Introduction to Rasch Measurement, ed. by E.V. Smith, R.M. Smith (JAM Press, Maple Grove, 2004b).Google Scholar
  49. J.M. Linacre, Discrimination, Guessing and carelessness asymptotes: estimating IRT parameters with Rasch. Rasch Meas. Trans. 18(1), 959–960 (2004c)Google Scholar
  50. J.M. Linacre, Rasch model with an error term. Rasch Meas. Trans. 23, 1238 (2010)Google Scholar
  51. J.M. Linacre, W.P. Fisher Jr., Harvey Goldstein’s objections to Rasch measurement: a response from Linacre and Fisher. Rasch Meas. Trans. 26(3), 1383–1389 (2012)Google Scholar
  52. J.M. Linacre, J.W. Heinemann, B.D. Wright, C.V. Granger, B.B. Hamilton, The structure and stability of the functional independence measure. Arch. Phys. Med. Rehabil. 75, 127–132 (1994)Google Scholar
  53. F.M. Lord, Unbiased estimators of ability parameters, of their variance, and of their parallel-forms reliability. Psychometrika 48, 233–245 (1983)CrossRefzbMATHGoogle Scholar
  54. R.W. Massof, Are subscales compatible with univariate measures, in IOMW 2014 workshop, Philadelphia (PA, USA) (2014). https://sites.google.com/site/iomw2014archive/iomw-program
  55. R.W. Massof, C. Bradley, A strategy for measuring patient preferences to incorporate in benefit-risk assessment if new ophthalmic devices and procedures. J Phys Conf Ser. 772, 012047 (2016).  https://doi.org/10.1088/1742-6596/772/1/012047CrossRefGoogle Scholar
  56. R.W. Massof, L. Ahmadian, L.L. Grover, J.T. Deremeik, J.E. Goldstein, C. Rainer, C. Epstein, G.D. Barnett, The activity inventory: an adaptive visual function questionnaire. Optom. Vis. Sci. 84, 763–774 (2007)CrossRefGoogle Scholar
  57. J. Melin, S.J Cano, L.R Pendrill, Metrology of human-based perceptions: The role of entropy in construct specification equations to improve the validity of cognitive tests, in Perspectives on Science (POS), Measurement at the Crossroads special issue, submitted 190520 (2019)Google Scholar
  58. A. Mencattini, L. Mari, A conceptual framework for concept definition in measurement: The case of ‘sensitivity’. Measurement 72, 77–87 (2015)CrossRefGoogle Scholar
  59. G.A. Miller, The magical number seven, plus or minus two: some limits on our capacity for processing information. Psychol. Rev. 63, 81–97 (1956)CrossRefGoogle Scholar
  60. R.J. Mislevy, Bayes model estimates in item response models. Psychometrika 51, 177–195 (1986)CrossRefMathSciNetzbMATHGoogle Scholar
  61. G. Nordin, R. Dybkaer, U. Forsum, X. Fuentes-Arderiu, F. Pontet, Vocabulary on nominal property, examination, and related concepts for clinical laboratory sciences (IFCC-IUPAC recommendations 2017). Pure Appl. Chem. 90(5), 913–935 (2018).  https://doi.org/10.1515/pac-2011-0613CrossRefGoogle Scholar
  62. I. Partchev, A Visual Guide to Item Response Theory (Friedrich-Schiller-Universität Jena, Jena, 2004). https://www.coursehero.com/file/28232270/Partchev-VisualIRTpdf/Google Scholar
  63. O. Pele, M. Werman, The quadratic-chi histogram distance family, in Computer Vision–ECCV 2010 (2010). pp. 749–762. www.cs.huji.ac.il/~werman/Papers/ECCV2010.pdf
  64. L.R. Pendrill, Man as a measurement instrument. NCSLI Meas. J. Meas. Sci. 9, 24–35 (2014a)CrossRefGoogle Scholar
  65. L.R. Pendrill, Using measurement uncertainty in decision-making & conformity assessment. Metrologia 51, S206 (2014b).  https://doi.org/10.1088/0026-1394/51/4/S206ADSCrossRefGoogle Scholar
  66. L.R. Pendrill, Limits to the reliability of the Rasch psychometric model. ENBIS 2017 (Naples, Sept.) (2017)Google Scholar
  67. L.R. Pendrill, W.P. Fisher Jr., Counting and quantification: comparing psychometric and metrological perspectives on visual perceptions of number. Measurement 71, 46–55 (2015).  https://doi.org/10.1016/j.measurement.2015.04.010CrossRefGoogle Scholar
  68. L.R. Pendrill, J. Melin, S. Cano and the NeuroMET consortium 2019, Metrological references for health care based on entropy, 19th International Congress of Metrology, Paris (FR), EDP Science: web of conference open access, https://cfmetrologie.edpsciences.org/component/issues/, in pressGoogle Scholar
  69. L.R. Pendrill, N. Petersson, Metrology of human-based and other categorical measurements. Meas. Sci. Technol. 27, 094003 (2016).  https://doi.org/10.1088/0957-0233/27/9/094003ADSCrossRefGoogle Scholar
  70. A. Possolo, Measurement, in Proceedings AMCTM 2017 (2018)Google Scholar
  71. A. Possolo, C. Elster, Evaluating the uncertainty of input quantities in measurement models. Metrologia 51, 339–353 (2014).  https://doi.org/10.1088/0026-1394/51/3/339ADSCrossRefGoogle Scholar
  72. D.L. Putnick, M.H. Bornstein, Measurement invariance conventions and reporting: the state of the art and future directions for psychological research. Dev. Rev. 41, 71–90 (2016)CrossRefGoogle Scholar
  73. C.R. Rao, Linear Statistical Inference and its Applications, 2nd edn. (Wiley, Hoboken, 1973)CrossRefzbMATHGoogle Scholar
  74. G. Rasch, On general laws and the meaning of measurement in psychology, in Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, vol. IV, (University of California Press, Berkeley, 1961), pp. 321–334. Available free from Project EuclidGoogle Scholar
  75. K.E. Roach, Measurement of health outcomes: Reliability, validity and responsiveness. J. Prosthet Orthot 18, 8 (2006)CrossRefGoogle Scholar
  76. G.B. Rossi, Measurement and probability – A probabilistic theory of measurement with applications, in Springer Series in Measurement Science and Technology (2014).  https://doi.org/10.1007/978-94-017-8825-0
  77. Y. Rubner, C. Tomasi, L.J. Guibas, The earth mover’s distance as a metric for image retrieval. Int. J. Comput. Vis. 40, 99–121 (2000)CrossRefzbMATHGoogle Scholar
  78. H.H. Scheiblechner, CML-parameter-estimation in a generalized multifactorial version of Rasch’s probabilistic measurement model with two categories of answers, in Research Bulletin, vol. 4, (Psychologisches Institut det Universität Wien, Vienna, 1971)Google Scholar
  79. T.D. Schneider, G.D. Stormo, L. Gold, A. Ehrenfeuch, The information content of binding sites on nucleotide sequences. J. Mol. Biol. 188, 415–431 (1986). www.lecb.ncifcrf.gov/~toms/paper/schneider1986CrossRefGoogle Scholar
  80. M.M. Schnore, J.T. Partington, Immediate memory for visual patterns: symmetry and amount of information. Psychon. Sci. 8, 421–422 (1967)CrossRefGoogle Scholar
  81. A.B. Smith, R. Rush, L.J. Fallowfield, G. Velikova, M. Sharpe. Rasch fit statistics and sample size considerations for polytomous data, BMC Medical Research Methodology, 8, 1–11,  https://doi.org/10.1186/1147-2288-8-33 (2008)
  82. C.J. Soto, O.P. John, S.D. Gosling, J. Potter, The developmental psychometrics of big five self-reports: Aacquiescence, factor structure, coherence, and differentiation from ages 10 to 20, J. Pers. Soc. Psychol., 94, 714–37 (2008)Google Scholar
  83. A.J. Stenner, M. Smith, Testing construct theories. Percept. Mot. Skills 55, 415–426 (1982).  https://doi.org/10.2466/pms.1982.55.2.415CrossRefGoogle Scholar
  84. A.J. Stenner, I.I.I. M Smith, D.S. Burdick, Toward a theory of construct definition. J. Educ. Meas. 20(4), 305–316 (1983)CrossRefGoogle Scholar
  85. A.J. Stenner, W.P. Fisher Jr., M.H. Stone, D.S. Burdick, Causal Rasch models. Front. Psychol. 4(536), 1–14 (2013)Google Scholar
  86. E. Svensson, Guidelines to statistical evaluation of data from rating scales and questionnaires. J. Rehabil. Med. 33, 47–48 (2001)CrossRefGoogle Scholar
  87. L. Tay, A.W. Meade, M. Cao, An overview and practical guide to IRT measurement equivalence analysis. Organ. Res. Methods 18, 3–46 (2015)CrossRefGoogle Scholar
  88. J.A. Tukey, Chapter 8, Data analysis and behavioural science, in The Collected Works of John A Tukey, Volume III, Philosophy and Principles of Data Analysis: 1949–1964, ed. by L. V. Jones, (University North Carolina, Chapel Hill, 1986)Google Scholar
  89. A.M. van der Bles, S. van der Linden, A.L.J. Freeman, J. Mitchell, A.B. Galvao, L. Zaval, D.J. Speigelhalter, Communicating uncertainty about facts, numbers and science. R. Soc. Open Sci. 6, 181870 (2019).  https://doi.org/10.1098/rsos.181870ADSCrossRefGoogle Scholar
  90. A. Verhoef, G. Huljberts and W. Vaessen, (2015), Introduction of a quality index, based on Generalizablilty theory, as a measure of rellability for univariate- and multivariate sensory descriptive data. Food quality and Preference, 40, 296–303Google Scholar
  91. W. Weaver, C. Shannon, The Mathematical Theory of Communication (Univ. of Illinois Press, Champaign, 1963). ISBN 0252725484zbMATHGoogle Scholar
  92. E.B. Wilson, M.M. Hilferty, The distribution of chi-square. Proc. NAS 17, 684–688 (1931)CrossRefzbMATHGoogle Scholar
  93. WINSTEPS® manual, p. 284. http://www.winsteps.com/index.htm
  94. S. Wold et al. PLS-regression: a basic tool of chemometrics. Chemometrics and Intelligent Laboratory Systems 58, 109–13 (2001)Google Scholar
  95. B.D. Wright, Comparing factor analysis and Rasch measurement. Rasch Meas. Trans. 8(1), 350 (1994). http://www.rasch.org/rmt/rmt81r.htm
  96. B.D. Wright, Diagnosing person misfit. Rasch Meas. Trans. 9(2), 430–431 (1995)Google Scholar
  97. B.D. Wright, G.N. Masters, Computation of OUTFIT and INFIT statistics. Rasch Meas. Trans. 3(4), 84–85 (1990). http://www.rasch.org/rmt/rmt34e.htmGoogle Scholar
  98. B.D. Wright, M.H. Stone, Best Test Design (MESA Press, Chicago, 1979). ISBN 0-941938-00-X. LC# 79-88489.Google Scholar
  99. J. Yang, W. Qiu, A measure of risk and a decision-making model based on expected utility and entropy. Eur. J. Oper. Res. 164, 792–799 (2005)CrossRefMathSciNetzbMATHGoogle Scholar
  100. Y. Yao, W.L. Lu, B. Xu, C.B. Li, C.P. Lin, D. Waxman, J.F. Feng, The increase of the functional entropy of the human brain with age. Sci. Rep. 3, 2853 (2013).  https://doi.org/10.1038/srep02853. www.nature.com/scientificreportsADSCrossRefGoogle Scholar
  101. J.V. Zidek, C. van Eeden, Uncertainty, Entropy, Variance and the Effect of Partial Information. Lect. Notes Monogr. Ser. 42, 155–167 (2003). Mathematical Statistics and Applications: Festschrift for Constance van Eeden. https://projecteuclid.org/download/pdf_1/euclid.lnms/1215091936MathSciNetGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Leslie Pendrill
    • 1
  1. 1.PartilleSweden

Personalised recommendations